84 research outputs found

    Electrochemical hydrogen charging of duplex stainless steel

    Get PDF
    This study evaluates the electrochemical hydrogen charging behavior and interaction between hydrogen and the microstructure of a duplex stainless steel. A saturation level of approximately 650 wppm is reached after 10 d of charging. The data are compared with a model resulting in a diffusion coefficient of 2.1 x 10(-14) m(2)/s. A two-step increase of the concentration is observed and ascribed to saturation of ferrite followed by charging of austenite grains. Microstructural changes are observed during charging, i.e., formation and interaction of dislocations, as a result of the high residual stresses inherent to the production process of duplex stainless steels

    Initiation of hydrogen induced cracks at secondary phase particles

    Get PDF
    The goal of this work is to propose a general mechanism for hydrogen induced crack initiation in steels based on a microstructural study of multiple steel grades. Four types of steels with strongly varying microstructures are studied for this purpose, i.e. ultra low carbon (ULC) steel, TRIP (transformation induced plasticity) steel, Fe-C-Ti generic alloy, and pressure vessel steel. A strong dependency of the initiation of hydrogen induced cracks on the microstructural features in the materials is observed. By use of SEM-EBSD characterization, initiation is found to always occur at the hard secondary phase particles in the materials

    The hydrogen embrittlement sensitivity of duplex stainless steel with different phase fractions evaluated by in-situ mechanical testing

    Get PDF
    The influence of the austenite (gamma) phase fraction on the hydrogen embrittlement of duplex stainless steel is investigated. Heat treatments are performed to create two duplex stainless steel specimens, containing 50% and 44% of austenite, respectively. Mechanical testing with and without hydrogen charging reveals that significant embrittlement occurs regardless of the austenite fraction. A higher austenite fraction results in a reduced ductility loss under the presence of hydrogen. Samples with a higher ferrite fraction are embrittled more due to their higher hydrogen diffusivity. In-situ tensile tests, interrupted at the ultimate tensile strength, show hydrogen-assisted cracks on the specimen surface both in austenite and ferrite and across the alpha/gamma interface

    The hydrogen embrittlement sensitivity of duplex stainless steel with different phase fractions evaluated by in-situ mechanical testing

    Get PDF
    The influence of the austenite (γ) phase fraction on the hydrogen embrittlement of duplex stainless steel is investigated. Heat treatments are performed to create two duplex stainless steel specimens, containing 50% and 44% of austenite, respectively. Mechanical testing with and without hydrogen charging reveals that significant embrittlement occurs regardless of the austenite fraction. A higher austenite fraction results in a reduced ductility loss under the presence of hydrogen. Samples with a higher ferrite fraction are embrittled more due to their higher hydrogen diffusivity. In-situ tensile tests, interrupted at the ultimate tensile strength, show hydrogen-assisted cracks on the specimen surface both in austenite and ferrite and across the α/γ interface

    Fractographic study for screening the hydrogen compatibility of X70 pipeline steels and welds

    Get PDF
    Please click Additional Files below to see the full abstrac

    The role of titanium and vanadium based precipitates on hydrogen induced degradation of ferritic materials

    Get PDF
    The hydrogen induced damage of generic Fe-C-Ti and Fe-C-V ferritic alloys was investigated to assess the influence of precipitates on the hydrogen sensitivity of a material. The precipitates, formed during heat treatment, were evaluated by scanning transmission electron microscopy (STEM). The hydrogen/material interaction was evaluated by: 1) melt and hot extraction to determine the total and diffusible hydrogen content, respectively, 2) permeation experiments to calculate the diffusion coefficient, 3) thermal desorption spectroscopy to determine the hydrogen trapping characteristics of the materials. Furthermore, two different types of hydrogen induced damage were evaluated, i.e. hydrogen assisted cracking and blistering, resulting from electrochemical hydrogen charging with and without the application of an external load, respectively. Evaluation of the hydrogen induced damage and the role of the precipitates was performed by combining optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). An important though divertive role of diffusible hydrogen is observed in both damage mechanisms for the investigated microstructures. On the one hand, a large amount of diffusible hydrogen compared to strongly trapped hydrogen promotes hydrogen assisted cracking of materials, while on the other hand, the blistering phenomenon is delayed under such conditions
    corecore