72 research outputs found

    High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo

    Get PDF
    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a PACT system equipped with a high frequency linear transducer array for mapping the microvascular network of a whole mouse brain with the skull intact and studying its hemodynamic activities. The linear array was scanned in the coronal plane to collect data from different angles, and full-view images were synthesized from the limited-view images in which vessels were only partially revealed. We investigated spontaneous neural activities in the deep brain by monitoring the concentration of hemoglobin in the blood vessels and observed strong interhemispherical correlations between several chosen functional regions, both in the cortical layer and in the deep regions. We also studied neural activities during an epileptic seizure and observed the epileptic wave spreading around the injection site and the wave propagating in the opposite hemisphere

    SASH1 mediates sensitivity of breast cancer cells to chloropyramine and is associated with prognosis in breast cancer

    Get PDF
    Expression of the SASH1 protein is reduced in a range of human cancers and has been implicated in apoptotic cancer cell death. This study investigated whether increasing SASH1 expression could be a useful therapeutic strategy in breast cancer. Ectopic SASH1 expression increased apoptosis in 7/8 breast cancer cell lines. Subsequent in silico connectivity screening demonstrated that the clinically approved antihistamine drug, chloropyramine, increased SASH1 mRNA levels. Chloropyramine has previously been shown to have anti-tumour activity in breast cancer in part through modulation of FAK signalling, a pathway also regulated by SASH1. This study demonstrated that chloropyramine increased SASH1 protein levels in breast cancer cells. Consistent with this the agent reduced cell confluency in 7/8 cell lines treated irrespective of their ER status but not apoptosis incompetent MCF7 cells. In contrast SASH1 siRNA-transfected breast cancer cells exhibited reduced chloropyramine sensitivity. The prognostic significance of SASH1 expression was also investigated in two breast cancer cohorts. Expression was associated with favourable outcome in ER-positive cases, but only those of low histological grade/proliferative status. Conversely, we found a very strong inverse association in HER2+ disease irrespective of ER status, and in triple-negative, basal-like cases. Overall, the data suggest that SASH1 is prognostic in breast cancer and could have subtype-dependent effects on breast cancer progression. Pharmacologic induction of SASH1 by chloropyramine treatment of breast cancer warrants further preclinical and clinical investigation

    A High-Temporal Resolution Technology for Dynamic Proteomic Analysis Based on 35S Labeling

    Get PDF
    As more and more research efforts have been attracted to dynamic or differential proteomics, a method with high temporal resolution and high throughput is required. In present study, a 35S in vivo Labeling Analysis for Dynamic Proteomics (SiLAD) was designed and tested by analyzing the dynamic proteome changes in the highly synchronized A549 cells, as well as in the rat liver 2/3 partial hepatectomy surgery. The results validated that SiLAD technique, in combination with 2-Dimensional Electrophoresis, provided a highly sensitivity method to illustrate the non-disturbed endogenous proteins dynamic changes with a good temporal resolution and high signal/noise ratio. A significant number of differential proteins can be discovered or re-categorized by this technique. Another unique feature of SiLAD is its capability of quantifying the rate of protein expression, which reflects the cellular physiological turn points more effectively. Finally, the prescribed SiLAD proteome snapshot pattern could be potentially used as an exclusive symbol for characterizing each stage in well regulated biological processes

    Modulation of β-Catenin Signaling by Glucagon Receptor Activation

    Get PDF
    The glucagon receptor (GCGR) is a member of the class B G protein–coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin–mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor–related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter–mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    The Application of Microcontroller MC9S08DZ60 in Automotive CAN Bus Electronic Control Unit

    No full text

    Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China

    No full text
    Moss-dominated biocrusts are widespread in degraded mining ecosystems and play an important role in soil development and ecosystem primary succession. In this work, the soil microbial community structure under moss-dominated biocrusts in ionic rare earth tailings was investigated to reveal the relationship between different types of moss and taxonomy/function of microbiomes. The results showed that microbial community structure was significantly influenced by four moss species (Claopodium rugulosifolium, Orthotrichum courtoisii, Polytrichum formosum, and Taxiphyllum giraldii). The microbial assembly was more prominent in Claopodium rugulosifolium soil than in the other moss soils, which covers 482 bacterial genera (including 130 specific genera) and 338 fungal genera (including 72 specific genera), and the specific genus is 40% to 1300% higher than that of the other three mosses. Although only 141 and 140 operational taxonomic units (OTUs) rooted in bacterial and fungal clusters, respectively, were shared by all four mosses grown in ionic rare earth tailings, this core microbiome could represent a large fraction (28.2% and 38.7%, respectively) of all sequence reads. The bacterial population and representation are the most abundant, which mainly includes Sphingomonas, Clostridium_sensu_stricto_1, and unclassified filamentous bacteria and chloroplasts, while the fungi population is relatively singular. The results also show that biocrust dominated by moss has a positive effect on soil microbe activity and soil nutrient conditions. Overall, these findings emphasize the importance of developing moss-dominated biocrusts as hotspots of ecosystem functioning and precious microbial genetic resources in degraded rare-earth mining areas and promoting a better understanding of biocrust ecology in humid climates under global change scenarios

    Accuracy of Presepsin in Sepsis Diagnosis: A Systematic Review and Meta-Analysis.

    No full text
    It's difficult to differentiate sepsis from non-sepsis, especially non-infectious SIRS, because no good standard exists for proof of infection. Soluble CD14 subtype (sCD14-ST), recently re-named presepsin, was identified as a new marker for the diagnosis of sepsis in several reports. However, the findings were based on the results of individual clinical trials, rather than a comprehensive and overall estimation. Thus, we conducted this systematic review and meta-analysis to estimate the pooled accuracy of presepsin in patients with sepsis suspect.A comprehensive electronic search was performed via internet retrieval system up to 15 December 2014. Methodological quality assessment was applied by using the QUADAS2 tool. The diagnostic value of presepsin in sepsis was evaluated by using the pooled estimate of sensitivity, specificity, likelihood ratio, and diagnostic odds ratio, as well as summary receiver operating characteristics curve.Nine studies with 10 trials and 2159 cases were included in the study. Only two trials had low concerns regarding applicability, whereas all trials were deemed to be at high risk of bias. Heterogeneity existed in the non-threshold effect, but not in the threshold effect. The pooled sensitivity of presepsin for sepsis was 0.78 (0.76-0.80), pooled specificity was 0.83 (0.80-0.85), pooled positive likelihood ratio was 4.63 (3.27-6.55), pooled negative likelihood ratio was 0.22 (0.16-0.30), and pooled diagnostic odds ratio was 21.73 (12.81-36.86). The area under curve of summary receiver operating characteristics curve was 0.89 (95%CI: 0.84 to 0.94) and Q* index was 0.82 (95%CI: 0.77 to 0.87).This meta-analysis demonstrates that presepsin had some superiority in the management of patients, and may be a helpful and valuable biomarker in early diagnosis of sepsis. However, presepsin showed a moderate diagnostic accuracy in differentiating sepsis from non-sepsis which prevented it from being recommended as a definitive test for diagnosing sepsis in isolation, but the results should be interpreted cautiously

    Macrophage heterogeneity and its interactions with stromal cells in tumour microenvironment

    No full text
    Abstract Macrophages and tumour stroma cells account for the main cellular components in the tumour microenvironment (TME). Current advancements in single-cell analysis have revolutionized our understanding of macrophage diversity and macrophage–stroma interactions. Accordingly, this review describes new insight into tumour-associated macrophage (TAM) heterogeneity in terms of tumour type, phenotype, metabolism, and spatial distribution and presents the association between these factors and TAM functional states. Meanwhile, we focus on the immunomodulatory feature of TAMs and highlight the tumour-promoting effect of macrophage–tumour stroma interactions in the immunosuppressive TME. Finally, we summarize recent studies investigating macrophage-targeted therapy and discuss their therapeutic potential in improving immunotherapy by alleviating immunosuppression
    • …
    corecore