11 research outputs found

    Stearic acid, beeswax and carnauba wax as green raw materials for the loading of carvacrol into nanostructured lipid carriers

    Get PDF
    The use of lipid nanoparticles as drug delivery systems has been growing over recent decades. Their biodegradable and biocompatible profile, capacity to prevent chemical degradation of loaded drugs/actives and controlled release for several administration routes are some of their advantages. Lipid nanoparticles are of particular interest for the loading of lipophilic compounds, as happens with essential oils. Several interesting properties, e.g., anti-microbial, antitumoral and antioxidant activities, are attributed to carvacrol, a monoterpenoid phenol present in the composition of essential oils of several species, including Origanum vulgare, Thymus vulgaris, Nigellasativa and Origanum majorana. As these essential oils have been proposed as the liquid lipid in the composition of nanostructured lipid carriers (NLCs), we aimed at evaluating the influence of carvacrol on the crystallinity profile of solid lipids commonly in use in the production of NLCs. Different ratios of solid lipid (stearic acid, beeswax or carnauba wax) and carvacrol were prepared, which were then subjected to thermal treatment to mimic the production of NLCs. The obtained binary mixtures were then characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and polarized light microscopy (PLM). The increased concentration of monoterpenoid in the mixtures resulted in an increase in the mass loss recorded by TG, together with a shift of the melting point recorded by DSC to lower temperatures, and the decrease in the enthalpy in comparison to the bulk solid lipids. The miscibility of carvacrol with the melted solid lipids was also confirmed by DSC in the tested concentration range. The increase in carvacrol content in the mixtures resulted in a decrease in the crystallinity of the solid bulks, as shown by SAXS and PLM. The decrease in the crystallinity of lipid matrices is postulated as an advantage to increase the loading capacity of these carriers. Carvacrol may thus be further exploited as liquid lipid in the composition of green NLCs for a range of pharmaceutical applications.This work was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil, FinanceCode 001), by the Portuguese Science and Technology Foundation (FCT/MCT) and European Funds (PRODER/COMPETE) under the projects M-ERA-NET/0004/2015 and UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio

    Desenvolvimento e validação de método analítico em CLAE-UV para a quantificação de ácido retinóico em microcápsulas de alginato e quitosana

    Get PDF
    O ácido retinóico (AR) tem sido utilizado para o tratamento de acne severa, rugas, estrias e celulite, no entanto, provoca irritação na pele e sofre rápida degradação quando exposto à luz e ao calor. Métodos analíticos rápidos para quantificação do AR são, portanto, necessários para ensaios de cinética de liberação in vitro. Nesse contexto, o objetivo deste trabalho foi desenvolver e validar um método rápido e sensível para o doseamento do AR em microcápsulas de alginato/quitosana contendo óleo de babaçu dispersas em gel natrosol® por cromatografia líquida de alta eficiência associada à espectroscopia UV e aplicá-lo na avaliação do perfil de liberação in vitro dessas formulações. As análises foram realizadas em modo isocrático utilizando coluna C18 de fase reversa 150 x 4,6 mm (5 &#956;m) com detecção a 350 nm. A fase móvel foi constituída de metanol e ácido acético 1% (85:15 v/v) com vazão de 1,8 mL/minuto. A faixa de linearidade do método foi de 0,5 a 60 &#956;g/mL (r² = 0,999). O método validado mostrou-se sensível, específico, exato, preciso, de baixo custo e o tempo de retenção do AR foi de 5,8 ± 0,4 minutos sendo, desta forma, mais rápido do que os relatados na literatura.<br>Retinoic acid (RA) has been used in the treatment of severe acne, wrinkles and cellulite. However, it induces skin irritation and rapidly suffers degradation under light and high temperate exposure. Rapid analytical methods to quantify retinoic acid are therefore mandatory for in vitro drug release studies. In this framework, the aim of this study was to develop and validate a rapid and responsive method to quantify the RA in microcapsules of chitosan and alginate containing babassu oil dispersed in natrosol® hydrogel using high performance liquid chromatography (HPLC). Furthermore this method was used to quantify in vitro release kinetics of RA from microcapsules. The analyses have been carried through an isocratic HPLC-UV method using a reversed phase 150 x 4.6 mm C18 (5&#956;m) column, a mobile phase constituted of methanol and 1% acetic acid (85:15) at a flow rate of 1.8 mL/min and detection at 350 nm. The linearity range was 0.5-60 &#956;g/mL (r² = 0.999). The validated HPLC-UV method was responsive, specific, accurate, precise, and economic and the RA retention time was 5.8 ± 0.4 minutes, being therefore, faster than that previously reported
    corecore