18 research outputs found

    Impact of a water-sediment regulation scheme on nutrient variations at the Lijin station of the Yellow River

    Get PDF
    The water-sediment regulation scheme (WSRS) imposed on dams throughout the Yellow River not only alleviates siltation in the downstream section but also alters the nutrient characteristics, which indirectly affects the enrichment of nutrients in the estuary. Nevertheless, the long-term changes in the nutrient contents and their causes in the lower Yellow River (LYR) remain unclear, and the nutrients characteristics during the years with and without WSRS have yet to be compared. Therefore, the purpose of this study was to explore the variations in the nutrient contents and limitations at the Lijin station on the LYR over the past decade, especially during the annual WSRS period, and to compare the water quality characteristics at Lijin between the years with and without WSRS. The results reveal that WSRS significantly changed the seasonal nutrient concentrations (nitrogen, phosphorus and silicon) at the Lijin station. The fluxes of these nutrients during WSRS (excluding 2016 and 2017) accounted for 11.64–40.63% of the total annual fluxes. The N concentration in the LYR was higher than that in some global rivers, while the concentrations of dissolved inorganic phosphorus (DIP) and dissolved silica (DSi) were lower than the average levels in other rivers. In addition, higher values of dissolved inorganic nitrogen (DIN), DSi and the Redfield ratio indicated that the growth of phytoplankton at the Lijin station was strongly restricted by P. However, during the 2 years without WSRS (2016 and 2017), the proportions of the nutrient fluxes in June were less than 66% of those in the WSRS period in other years. Additionally, there was a potential Si limitation in June in these 2 years. Furthermore, due to the occurrence of floods upstream of the Yellow River and the low-level operation of the Xiaolangdi Reservoir, the fluxes of nutrients during WSRS in 2018 were approximately 0.90–4.20 times those during the same period in 2009–2015 and 6.30–35.76 times those in June 2016 and June 2017. This study shows that WSRS effectively changes the nutrient balance in the LYR and provides a reference for the multi-objective collaborative optimization of WSRS to improve siltation and control flood in the LYR

    Pyramid-Structured Depth MAP Super-Resolution Based on Deep Dense-Residual Network

    No full text

    A new phenone from the roots of <i>Paeonia suffruticosa</i> Andrews

    No full text
    <p>Thirteen phenones were obtained from the 70% ethanol extract of <i>Paeonia suffruticosa</i> Andrews. Their structures were determined on the basis of chemical methods and spectral data. Among them, compound <b>1</b> was identified as a new compound, and compounds <b>5</b> and <b>13</b> were obtained from genus <i>Paeonia</i> for the first time. The inhibitory effects of isolated compounds (<b>1</b>–<b>12</b>) on nitric oxide (NO) production in lipopolysaccharide-activated macrophages were evaluated, and NO production was suppressed significantly by compound <b>7</b>.</p

    Effect of typhoon-induced intertidal-flat erosion on dominant macrobenthic species (Meretrix meretrix)

    No full text
    Benthic animal populations inhabiting intertidal flats provide important ecosystem functions and services that may be disrupted by physical disturbances such as tropical cyclones, which are predicted to increase in frequency and intensity under future climate change. However, the spatial reach at which tropical cyclones impact macrobenthos populations in intertidal flats remains poorly understood. We examined whether a typhoon with a center that remained more than 1400 km away from the study site could trigger severe erosion of intertidal flats and adversely affect macrobenthos populations. We undertook simultaneous measurements of hydrodynamics (waves, currents), morphodynamics (erosion, accretion) and density and biomass of the macrobenthic bivalve Meretrix meretrix during the passage of this typhoon, on an intertidal flat on the Chinese coast. Our results showed that, in spite of the considerable distance from the storm center, the bed shear stress greatly exceeded the critical value for erosion, resulting in rapid erosion of approximately 10 cm and a nearly 50% reduction in both the density and the biomass of the clam species. Our findings suggest that if storms become more frequent and more intense in a future warmer climate, they may increase physical disturbances to intertidal flats and their benthic animal populations, even at great distances from storm centers

    Effect of typhoon-induced intertidal-flat erosion on dominant macrobenthic species (Meretrix meretrix)

    No full text
    Benthic animal populations inhabiting intertidal flats provide important ecosystem functions and services that may be disrupted by physical disturbances such as tropical cyclones, which are predicted to increase in frequency and intensity under future climate change. However, the spatial reach at which tropical cyclones impact macrobenthos populations in intertidal flats remains poorly understood. We examined whether a typhoon with a center that remained more than 1400 km away from the study site could trigger severe erosion of intertidal flats and adversely affect macrobenthos populations. We undertook simultaneous measurements of hydrodynamics (waves, currents), morphodynamics (erosion, accretion) and density and biomass of the macrobenthic bivalve Meretrix meretrix during the passage of this typhoon, on an intertidal flat on the Chinese coast. Our results showed that, in spite of the considerable distance from the storm center, the bed shear stress greatly exceeded the critical value for erosion, resulting in rapid erosion of approximately 10 cm and a nearly 50% reduction in both the density and the biomass of the clam species. Our findings suggest that if storms become more frequent and more intense in a future warmer climate, they may increase physical disturbances to intertidal flats and their benthic animal populations, even at great distances from storm centers

    Effect of typhoon-induced intertidal-flat erosion on dominant macrobenthic species (Meretrix meretrix)

    No full text
    Benthic animal populations inhabiting intertidal flats provide important ecosystem functions and services that may be disrupted by physical disturbances such as tropical cyclones, which are predicted to increase in frequency and intensity under future climate change. However, the spatial reach at which tropical cyclones impact macrobenthos populations in intertidal flats remains poorly understood. We examined whether a typhoon with a center that remained more than 1400 km away from the study site could trigger severe erosion of intertidal flats and adversely affect macrobenthos populations. We undertook simultaneous measurements of hydrodynamics (waves, currents), morphodynamics (erosion, accretion) and density and biomass of the macrobenthic bivalve Meretrix meretrix during the passage of this typhoon, on an intertidal flat on the Chinese coast. Our results showed that, in spite of the considerable distance from the storm center, the bed shear stress greatly exceeded the critical value for erosion, resulting in rapid erosion of approximately 10 cm and a nearly 50% reduction in both the density and the biomass of the clam species. Our findings suggest that if storms become more frequent and more intense in a future warmer climate, they may increase physical disturbances to intertidal flats and their benthic animal populations, even at great distances from storm centers

    Occurrence and multilocus genotyping of Giardia duodenalis from post-weaned dairy calves in Sichuan province, China.

    No full text
    Giardia duodenalis is a zoonotic parasitic protist and poses a threat to human and animal health. This study investigated the occurrence of G. duodenalis infection in post-weaned calves from Sichuan province, China. Faecal samples were collected from a total of 306 post-weaned calves (3-12 months old) from 10 farms, including 4 intensive feeding farms and 6 free-ranging farms. The overall infection rate of G. duodenalis was 41.2% (126/306) based on the PCR results at any of the three genetic loci: beta-giardin (bg), triose-phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. Giardia duodenalis assemblages E (n = 115, 91.3%), A (n = 3, 2.4%), and A mixed with E (n = 8, 6.3%) were identified among the 126 positive specimens. Multilocus sequence typing of G. duodenalis revealed 34 assemblage E multilocus genotypes (MLGs), 1 assemblage A MLG and 7 mixed assemblage (A and E) MLGs. The eBURST data showed a high degree of genetic diversity within assemblage E MLGs. The phylogenetic tree revealed that MLG E3 was the primary MLG subtype in Sichuan province and also the most widely distributed in China
    corecore