15 research outputs found

    Optical Coherence Tomography of Spontaneous Basilar Artery Dissection in a Patient With Acute Ischemic Stroke

    Get PDF
    The diagnosis of intracranial arterial dissection (IAD) may be challenging and multimodal imaging techniques are often needed to confirm the diagnosis. Previous studies have based their criteria for diagnosis of IAD on conventional angiography, computed tomography, or magnetic resonance imaging. We report a case with acute ischemic stroke due to spontaneous basilar artery dissection in which intravascular optical coherence tomography (OCT) was used to show features of IAD. A 59-years-old woman presented with symptoms of acute ischemic stroke. Thrombosis related to basilar artery (BA) stenosis was assumed on conventional angiography; however, no clot was retrieved after mechanical thrombectomy (MT) and a restored BA caliber was observed after a rescue recanalization with the detachment of a self-expanding stent was performed. Spontaneous IAD was suspected; however, angiographic findings were ambiguous for confirming IAD. The patient remained symptom-free until 18-months follow-up. At this point, angiography showed restenosis at the proximal tapered length of the stent. In vivo OCT was performed to assess the pathological changes of the restenosis and confirm the diagnosis of IAD.OCT revealed BA dissection with the presence of remnant transverse flap, double lumen and mural hematoma. Imaging at multiple levels identified intimal disruption that originated in the right vertebral artery and extended distally to the BA. The use of intravascular imaging with OCT enabled the accurate diagnosis of IAD. Care should be taken as the procedure may add additional risks to the patient. Future studies are needed to validate the safety of OCT in IAD

    In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li₂CO₃ and Li₂O Nanorods

    Get PDF
    Solid-electrolyte interface (SEI) is “the most important but least understood (component) in rechargeable Li-ion batteries”. The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteries. Even though Li2_{2}CO3_{3} and Li2_{2}O are identified as the major components of SEI, their mechanical properties are not well understood. Herein, SEI-related materials such as Li2_{2}CO3_{3} and Li2_{2}O were electrochemically deposited using an environmental transmission electron microscopy (ETEM), and their mechanical properties were assessed by in situ atomic force microscopy (AFM) and inverse finite element simulations. Both Li2_{2}CO3_{3} and Li2_{2}O exhibit nanocrystalline structures and good plasticity. The ultimate strength of Li2_{2}CO3_{3} ranges from 192 to 330 MPa, while that of Li2_{2}O is less than 100 MPa. These results provide a new understanding of the SEI and its related dendritic problems in lithium batteries

    Safety and Efficacy of Low-Dose Tirofiban Combined With Intravenous Thrombolysis and Mechanical Thrombectomy in Acute Ischemic Stroke: A Matched-Control Analysis From a Nationwide Registry

    Get PDF
    Purpose: Tirofiban administration to acute ischemic stroke patients undergoing mechanical thrombectomy with preceding intravenous thrombolysis remains controversial. The aim of the current study was to evaluate the safety and efficacy of low-dose tirofiban during mechanical thrombectomy in patients with preceding intravenous thrombolysis.Methods: Patients with acute ischemic stroke undergoing mechanical thrombectomy and preceding intravenous thrombolysis were derived from “ANGEL-ACT,” a multicenter, prospective registry study. The patients were dichotomized into tirofiban and non-tirofiban groups based on whether tirofiban was administered. Propensity score matching was used to minimize case bias. The primary safety endpoint was symptomatic intracerebral hemorrhage (sICH), defined as an intracerebral hemorrhage (ICH) associated with clinical deterioration as determined by the Heidelberg Bleeding Classification. All ICHs and hemorrhage types were recorded. Clinical outcomes included successful recanalization, dramatic clinical improvement, functional independence, and mortality at the 3-month follow-up timepoint. Successful recanalization was defined as a modified Thrombolysis in Cerebral Ischemia score of 2b or 3. Dramatic clinical improvement at 24 h was defined as a reduction in NIH stroke score of ≥10 points compared with admission, or a score ≤1. Functional independence was defined as a Modified Rankin Scale (mRS) score of 0–2 at 3-months.Results: The study included 201 patients, 81 in the tirofiban group and 120 in the non-tirofiban group, and each group included 68 patients after propensity score matching. Of the 201 patients, 52 (25.9%) suffered ICH, 15 (7.5%) suffered sICH, and 18 (9.0%) died within 3-months. The median mRS was 3 (0–4), 99 (49.3%) achieved functional independence. There were no statistically significant differences in safety outcomes, efficacy outcomes on successful recanalization, dramatic clinical improvement, or 3-month mRS between the tirofiban and non-tirofiban groups (all p > 0.05). Similar results were obtained after propensity score matching.Conclusion: In acute ischemic stroke patients who underwent mechanical thrombectomy and preceding intravenous thrombolysis, low-dose tirofiban was not associated with increased risk of sICH or ICH. Further randomized clinical trials are needed to confirm the effects of tirofiban in patients undergoing bridging therapy

    Increased co-expression of PD1 and TIM3 is associated with poor prognosis and immune microenvironment heterogeneity in gallbladder cancer

    No full text
    Abstract Background The effectiveness of immune checkpoint inhibitors in treating gallbladder cancer (GBC) remains unsatisfactory. Recently, several new immune checkpoints have been identified. However, investigations exploring these immune checkpoints in GBC are limited. In this study, we aim to investigate the expression patterns and clinical implications of various immune checkpoints, and further characterize the spatial and quantitative heterogeneity of immune components in GBC. Methods We employed single and multiplex immunohistochemistry to evaluate the expression of five immune checkpoint markers and four immune cell markers in the primary tumor core, hepatic invasion margin, and liver metastasis. Subsequently, we analyzed their interrelationships and their prognostic significance. Results We observed a robust positive correlation between PD1/TIM3 expression in GBC (R = 0.614, P < 0.001). The co-expression of PD1/TIM3 exhibited a synergistic effect in predicting poor prognosis among postoperative GBC patients. Further analysis revealed that the prognostic significance of PD1/TIM3 was prominent in the subgroup with high infiltration of CD8 + T cells (P < 0.001). Multiplex immunohistochemistry reveals that PD1 + TIM3 + FOXP3 + cells constitute a significant proportion of FOXP3 + TILs in GBC tissue. Moreover, the co-high expression of PD1 and TIM3 is positively correlated with the accumulation of CD8 + TILs at the hepatic invasion margin. Lastly, our findings indicated reduced expression levels of immune checkpoints and diminished immune cell infiltration in liver metastases compared to primary tumors. Conclusions Increased co-expression of PD1/TIM3 is associated with poor prognosis in GBC patients and is related to the heterogeneity of immune microenvironment between GBC primary tumor and its hepatic invasion margin or liver metastases, which may be a potential target for future immunotherapy of GBC

    Automatic measurement of Centreline segregation in continuously cast line pipe steel slabs

    No full text
    Centreline segregation appears as a positive segregation of alloying elements like C, Mn and P in the mid thickness region of continuously cast slabs. It is an intrinsic phenomenon for the casting process and it is almost impossible to mitigate through post processing. Centreline segregation can be harmful to the weldability and integrity of any fabricated steel product, especially line pipe. At present, there is no international consensus on evaluation methods of centreline segregation. A repeatable and objective method for evaluation of centreline segregation is highly desirable for both steelmaking process improvement and also for the prediction of final product performance. In the current work, a MATLAB program based on image analysis was developed to evaluate the images of centreline segregation by automatic measurement of segregation features. The original grey scale images of the centre line segregation were reduced to black and white images for automatic measurement. The black features of the image, representing areas of element segregation, were identified according to predefined criteria. The degree of segregation was evaluated based on equations which were developed by considering different parameters of the segregation segments, and also was evaluated by rules gleaned from experienced steelmakers
    corecore