5,712 research outputs found

    Molecular basis of glutamate toxicity in retinal ganglion cells

    Get PDF
    Loss of retinal ganglion cells (RGCs) is a hallmark of many ophthalmic diseases including glaucoma, retinal ischemia due to central artery occlusion, anterior ischemic optic neuropathy and may be significant in optic neuritis, optic nerve trauma, and AIDS. Recent research indicates that neurotoxicity is caused by excessive stimulation of receptors for excitatory amino acids (EAAs). In particular, the amino acid glutamate has been shown to act as a neurotoxin which exerts its toxic effect on RGCs predominantly through the N-methyl-d-aspartate (NMDA) subtype of glutamate receptor. NMDA-receptor-mediated toxicity in RGCs is dependent on the influx of extracellular Ca2+. The increase in [Ca2+]i acts as a second messenger that sets in motion the cascade leading to eventual cell death. Glutamate stimulates its own release in a positive feedback loop by its interaction with the non-NMDA receptor subtypes. Ca2+-induced Ca2+ release and further influx of Ca2+ through voltage-gated Ca2+ channels after glutamate-induced depolarization contribute to glutamate toxicity. In vitro and in vivo studies suggest that the use of selective NMDA receptor antagonists or Ca2+ channel blockers should be useful in preventing or at least abating neuronal loss in the retina. Of particular importance for future clinical use of NMDA receptor antagonists in the treatment of acute vascular insults is the finding that some drugs can prevent glutamate-induced neurotoxicity, even when administered a few hours after the onset of retinal ischemia

    Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress

    Get PDF
    Protein S-nitrosylation modulates important cellular processes, including neurotransmission, vasodilation, proliferation, and apoptosis in various cell types. We have previously reported that protein disulfide isomerase (PDI) is S-nitrosylated in brains of patients with sporadic neurodegenerative diseases. This modification inhibits PDI enzymatic activity and consequently leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen. Here, we describe S-nitrosylation of additional ER pathways that affect the unfolded protein response (UPR) in cell-based models of Parkinson's disease (PD). We demonstrate that nitric oxide (NO) can S-nitrosylate the ER stress sensors IRE1α and PERK. While S-nitrosylation of IRE1α inhibited its ribonuclease activity, S-nitrosylation of PERK activated its kinase activity and downstream phosphorylation/inactivation or eIF2α. Site-directed mutagenesis of IRE1α(Cys931) prevented S-nitrosylation and inhibition of its ribonuclease activity, indicating that Cys931 is the predominant site of S-nitrosylation. Importantly, cells overexpressing mutant IRE1α(C931S) were resistant to NO-induced damage. Our findings show that nitrosative stress leads to dysfunctional ER stress signaling, thus contributing to neuronal cell death

    Redox Regulation of Protein Function via Cysteine S-Nitrosylation and Its Relevance to Neurodegenerative Diseases

    Get PDF
    Debilitating neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), can be attributed to neuronal cell damage in specific brain regions. An important hallmark of these diseases is increased oxidative and nitrosative stress that occurs via overproduction of highly reactive free radicals known as reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules are normally removed by cellular antioxidant systems. Under physiological conditions, ROS/RNS are present at low levels, mediating several neurotrophic and neuroprotective signaling pathways. In contrast, under pathological conditions, there is a pronounced increase in ROS/RNS generation, impairing normal neurological function. Nitric oxide (NO) is one such molecule that functions as a signaling agent under physiological conditions but causes nitrosative stress under pathological conditions due to its enhanced production. As first reported by our group and colleagues, the toxic effects of NO can be in part attributed to thiol S-nitrosylation, a posttranslational modification of cysteine residues on specific proteins. Here, we review several reports appearing over the past decade showing that S-nitrosylation of an increasing number of proteins compromises important cellular functions, including mitochondrial dynamics, endoplasmic reticulum (ER) protein folding, and signal transduction, thereby promoting synaptic damage, cell death, and neurodegeneration

    NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphatase PTEN governs the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway which is arguably the most important pro-survival pathway in neurons. Recently, PTEN has also been implicated in multiple important CNS functions such as neuronal differentiation, plasticity, injury and drug addiction. It has been reported that loss of PTEN protein, accompanied by Akt activation, occurs under excitotoxic conditions (stroke) as well as in Alzheimer's (AD) brains. However the molecular signals and mechanism underlying PTEN loss are unknown.</p> <p>Results</p> <p>In this study, we investigated redox regulation of PTEN, namely S-nitrosylation, a covalent modification of cysteine residues by nitric oxide (NO), and H<sub>2</sub>O<sub>2</sub>-mediated oxidation. We found that S-nitrosylation of PTEN was markedly elevated in brains in the early stages of AD (MCI). Surprisingly, there was no increase in the H<sub>2</sub>O<sub>2</sub>-mediated oxidation of PTEN, a modification common in cancer cell types, in the MCI/AD brains as compared to normal aged control. Using several cultured neuronal models, we further demonstrate that S-nitrosylation, in conjunction with NO-mediated enhanced ubiquitination, regulates both the lipid phosphatase activity and protein stability of PTEN. S-nitrosylation and oxidation occur on overlapping and distinct Cys residues of PTEN. The NO signal induces PTEN protein degradation via the ubiquitin-proteasome system (UPS) through NEDD4-1-mediated ubiquitination.</p> <p>Conclusion</p> <p>This study demonstrates for the first time that NO-mediated redox regulation is the mechanism of PTEN protein degradation, which is distinguished from the H<sub>2</sub>O<sub>2</sub>-mediated PTEN oxidation, known to only inactivate the enzyme. This novel regulatory mechanism likely accounts for the PTEN loss observed in neurodegeneration such as in AD, in which NO plays a critical pathophysiological role.</p

    Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accumulation of aberrant proteins to form Lewy bodies (LBs) is a hallmark of Parkinson's disease (PD). Ubiquitination-mediated degradation of aberrant, misfolded proteins is critical for maintaining normal cell function. Emerging evidence suggests that oxidative/nitrosative stress compromises the precisely-regulated network of ubiquitination in PD, particularly affecting parkin E3 ligase activity, and contributes to the accumulation of toxic proteins and neuronal cell death.</p> <p>Results</p> <p>To gain insight into the mechanism whereby cell stress alters parkin-mediated ubiquitination and LB formation, we investigated the effect of oxidative stress. We found significant increases in oxidation (sulfonation) and subsequent aggregation of parkin in SH-SY5Y cells exposed to the mitochondrial complex I inhibitor 1-methyl-4-phenlypyridinium (MPP<sup><b>+</b></sup>), representing an <it>in vitro </it>cell-based PD model. Exposure of these cells to direct oxidation via pathological doses of H<sub>2</sub>O<sub>2 </sub>induced a vicious cycle of increased followed by decreased parkin E3 ligase activity, similar to that previously reported following S-nitrosylation of parkin. Pre-incubation with catalase attenuated H<sub>2</sub>O<sub>2 </sub>accumulation, parkin sulfonation, and parkin aggregation. Mass spectrometry (MS) analysis revealed that H<sub>2</sub>O<sub>2 </sub>reacted with specific cysteine residues of parkin, resulting in sulfination/sulfonation in regions of the protein similar to those affected by parkin mutations in hereditary forms of PD. Immunohistochemistry or gel electrophoresis revealed an increase in aggregated parkin in rats and primates exposed to mitochondrial complex I inhibitors, as well as in postmortem human brain from patients with PD with LBs.</p> <p>Conclusion</p> <p>These findings show that oxidative stress alters parkin E3 ligase activity, leading to dysfunction of the ubiquitin-proteasome system and potentially contributing to LB formation.</p

    Roles of KChIP1 in the regulation of GABA-mediated transmission and behavioral anxiety

    Get PDF
    K+ channel interacting protein 1 (KChIP1) is a neuronal calcium sensor (NCS) protein that interacts with multiple intracellular molecules. Its physiological function, however, remains largely unknown. We report that KChIP1 is predominantly expressed at GABAergic synapses of a subset of parvalbumin-positive neurons in the brain. Forced expression of KChIP1 in cultured hippocampal neurons increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), reduced paired pulse facilitation of autaptic IPSCs, and decreases potassium current density. Furthermore, genetic ablation of KChIP1 potentiated potassium current density in neurons and caused a robust enhancement of anxiety-like behavior in mice. Our study suggests that KChIP1 is a synaptic protein that regulates behavioral anxiety by modulating inhibitory synaptic transmission, and drugs that act on KChIP1 may help to treat patients with mood disorders including anxiety

    Genetic Deletion of NR3A Accelerates Glutamatergic Synapse Maturation

    Get PDF
    Glutamatergic synapse maturation is critically dependent upon activation of NMDA-type glutamate receptors (NMDARs); however, the contributions of NR3A subunit-containing NMDARs to this process have only begun to be considered. Here we characterized the expression of NR3A in the developing mouse forebrain and examined the consequences of NR3A deletion on excitatory synapse maturation. We found that NR3A is expressed in many subcellular compartments, and during early development, NR3A subunits are particularly concentrated in the postsynaptic density (PSD). NR3A levels dramatically decline with age and are no longer enriched at PSDs in juveniles and adults. Genetic deletion of NR3A accelerates glutamatergic synaptic transmission, as measured by AMPAR-mediated postsynaptic currents recorded in hippocampal CA1. Consistent with the functional observations, we observed that the deletion of NR3A accelerated the expression of the glutamate receptor subunits NR1, NR2A, and GluR1 in the PSD in postnatal day (P) 8 mice. These data support the idea that glutamate receptors concentrate at synapses earlier in NR3A-knockout (NR3A-KO) mice. The precocious maturation of both AMPAR function and glutamate receptor expression are transient in NR3A-KO mice, as AMPAR currents and glutamate receptor protein levels are similar in NR3A-KO and wildtype mice by P16, an age when endogenous NR3A levels are normally declining. Taken together, our data support a model whereby NR3A negatively regulates the developmental stabilization of glutamate receptors involved in excitatory neurotransmission, synaptogenesis, and spine growth

    Privatization and State Capacity in Postcommunist Society

    Full text link
    Economists have used cross-national regression analysis to argue that postcommunist economic failure is the result of inadequate adherence liberal economic policies. Sociologists have relied on case study data to show that postcommunist economic failure is the outcome of too close adherence to liberal policy recommendations, which has led to an erosion of state effectiveness, and thus produced poor economic performance. The present paper advances a version of this statist theory based on a quantitative analysis of mass privatization programs in the postcommunist world. We argue that rapid large-scale privatization creates severe supply and demand shocks for enterprises, thereby inducing firm failure. The resulting erosion of tax revenues leads to a fiscal crisis for the state, and severely weakens its capacity and bureaucratic character. This, in turn, reacts back on the enterprise sector, as the state can no longer support the institutions necessary for the effective functioning of a modern economy, thus resulting in deindustrialization. Using cross-national regression techniques we find that the implementation of mass privatization programs negatively impacts measures of economic growth, state capacity and the security of property rights.http://deepblue.lib.umich.edu/bitstream/2027.42/40192/3/wp806.pd

    Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models

    Get PDF
    Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing. Here we show that mutant HTT redirects an intracellular store of juvenile NMDARs containing GluN3A subunits to the surface of striatal neurons by sequestering and disrupting the subcellular localization of the endocytic adaptor PACSIN1, which is specific for GluN3A. Overexpressing GluN3A in wild-type mouse striatum mimicked the synapse loss observed in Huntington's disease mouse models, whereas genetic deletion of GluN3A prevented synapse degeneration, ameliorated motor and cognitive decline and reduced striatal atrophy and neuronal loss in the YAC128 Huntington's disease mouse model. Furthermore, GluN3A deletion corrected the abnormally enhanced NMDAR currents, which have been linked to cell death in Huntington's disease and other neurodegenerative conditions. Our findings reveal an early pathogenic role of GluN3A dysregulation in Huntington's disease and suggest that therapies targeting GluN3A or pathogenic HTT-PACSIN1 interactions might prevent or delay disease progression
    corecore