29 research outputs found

    Good and ‘bad’ deaths during the COVID-19 pandemic: insights from a rapid qualitative study

    Get PDF
    Dealing with excess death in the context of the COVID-19 pandemic has thrown the question of a good or bad death' into sharp relief as countries across the globe have grappled with multiple peaks of cases and mortality; and communities mourn those lost. In the UK, these challenges have included the fact that mortality has adversely affected minority communities. Corpse disposal and social distancing guidelines do not allow a process of mourning in which families and communities can be involved in the dying process. This study aimed to examine the main concerns of faith and non-faith communities across the UK in relation to death in the context of the COVID-19 pandemic. The research team used rapid ethnographic methods to examine the adaptations to the dying process prior to hospital admission, during admission, during the disposal and release of the body, during funerals and mourning. The study revealed that communities were experiencing collective loss, were making necessary adaptations to rituals that surrounded death, dying and mourning and would benefit from clear and compassionate communication and consultation with authorities

    'A good death' during the Covid-19 pandemic in the UK: a report on key findings and recommendations

    Get PDF
    Dealing with death and bereavement in the context of the Covid-19 Pandemic will present significant challenges for at least the next three months. The current situation does not allow for families andbcommunities to be involved in the process of death in ways in which they would normally hope or expect to be. In addition, mortality rates will disproportionately affect vulnerable households. The government has identified the following communities as being at increased risk: single parent households; multi-generational Black and Minority Ethnic groups; men without degrees in lone households and/or in precarious work; small family business owners in their 50s; and elderlyhouseholds. Our study focused on these groups. This report presents a summary of findings and key recommendations by a team of anthropologists from the London School of Economics who conducted a public survey and 58 cross-community interviews between 3 and 9 April 2020. It explores ways to prepare these communities and households for impending deaths with communications and policy support. More information on the research methodology, data protection and ethical procedures is available in Appendix 1. A summary of relevant existing research can be found in Appendix 2. A list of key contacts across communities for consultation is available on request. Research was focused on “what a good death looks like” for people across all faiths and for vulnerable groups. It examined how communities were already adapting how they dealt with processes of dying, burials, funerals and bereavement during the pandemic, and responding to new government regulations. It specifically focused on five transitions in the process of death, and what consultation processes, policies and communications strategies could be mobilised to support communities through these phases

    Theiler's Murine Encephalomyelitis Virus as a Vaccine Candidate for Immunotherapy

    Get PDF
    The induction of sterilizing T-cell responses to tumors is a major goal in the development of T-cell vaccines for treating cancer. Although specific components of anti-viral CD8+ immunity are well characterized, we still lack the ability to mimic viral CD8+ T-cell responses in therapeutic settings for treating cancers. Infection with the picornavirus Theiler's murine encephalomyelitis virus (TMEV) induces a strong sterilizing CD8+ T-cell response. In the absence of sterilizing immunity, the virus causes a persistent infection. We capitalized on the ability of TMEV to induce strong cellular immunity even under conditions of immune deficiency by modifying the virus to evaluate its potential as a T-cell vaccine. The introduction of defined CD8+ T-cell epitopes into the leader sequence of the TMEV genome generates an attenuated vaccine strain that can efficiently drive CD8+ T-cell responses to the targeted antigen. This virus activates T-cells in a manner that is capable of inducing targeted tissue damage and glucose dysregulation in an adoptive T-cell transfer model of diabetes mellitus. As a therapeutic vaccine for the treatment of established melanoma, epitope-modified TMEV can induce strong cytotoxic T-cell responses and promote infiltration of the T-cells into established tumors, ultimately leading to a delay in tumor growth and improved survival of vaccinated animals. We propose that epitope-modified TMEV is an excellent candidate for further development as a human T-cell vaccine for use in immunotherapy

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Identifying Game-Based Digital Biomarkers of Cognitive Risk for Adolescent Substance Misuse: Protocol for a Proof-of-Concept Study

    No full text
    BackgroundAdolescents at risk for substance misuse are rarely identified early due to existing barriers to screening that include the lack of time and privacy in clinic settings. Games can be used for screening and thus mitigate these barriers. Performance in a game is influenced by cognitive processes such as working memory and inhibitory control. Deficits in these cognitive processes can increase the risk of substance use. Further, substance misuse affects these cognitive processes and may influence game performance, captured by in-game metrics such as reaction time or time for task completion. Digital biomarkers are measures generated from digital tools that explain underlying health processes and can be used to predict, identify, and monitor health outcomes. As such, in-game performance metrics may represent digital biomarkers of cognitive processes that can offer an objective method for assessing underlying risk for substance misuse. ObjectiveThis is a protocol for a proof-of-concept study to investigate the utility of in-game performance metrics as digital biomarkers of cognitive processes implicated in the development of substance misuse. MethodsThis study has 2 aims. In aim 1, using previously collected data from 166 adolescents aged 11-14 years, we extracted in-game performance metrics from a video game and are using machine learning methods to determine whether these metrics predict substance misuse. The extraction of in-game performance metrics was guided by literature review of in-game performance metrics and gameplay guidebooks provided by the game developers. In aim 2, using data from a new sample of 30 adolescents playing the same video game, we will test if metrics identified in aim 1 correlate with cognitive processes. Our hypothesis is that in-game performance metrics that are predictive of substance misuse in aim 1 will correlate with poor cognitive function in our second sample. ResultsThis study was funded by National Institute on Drug Abuse through the Center for Technology and Behavioral Health Pilot Core in May 2022. To date, we have extracted 285 in-game performance metrics. We obtained institutional review board approval on October 11, 2022. Data collection for aim 2 is ongoing and projected to end in February 2024. Currently, we have enrolled 12 participants. Data analysis for aim 2 will begin once data collection is completed. The results from both aims will be reported in a subsequent publication, expected to be published in late 2024. ConclusionsScreening adolescents for substance use is not consistently done due to barriers that include the lack of time. Using games that provide an objective measure to identify adolescents at risk for substance misuse can increase screening rates, early identification, and intervention. The results will inform the utility of in-game performance metrics as digital biomarkers for identifying adolescents at high risk for substance misuse. International Registered Report Identifier (IRRID)DERR1-10.2196/4699

    Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain

    No full text
    NR3A is a developmentally regulated N-methyl-D-aspartate receptor (NMDAR) subunit that was previously known as NMDAR-L or x-1. Unlike other NMDAR subunits, NR3A inhibits the NMDAR-associated ion channel in a novel manner, and a role in synaptogenesis has been suggested for this subunit. Here, we report a comprehensive study to delineate the temporal and anatomic expression of NR3A protein in the mammalian brain by using a monoclonal anti-NR3A antibody. NR3A protein was found to peak at postnatal day (P) 8, and to decrease gradually from P12 to adulthood in the rat central nervous system. Moreover, NR3A protein was heavily expressed in all areas of the isocortex, portions of the amygdaloid nuclei, and selective cell layers and nuclei of the hippocampus, thalamus, hypothalamus, brainstem, and spinal cord. NR3A protein was also expressed in the cerebellar cortex, whereas only weak signal was detected in the previous in situ studies by using riboprobes. At an ultrastructural level, NR3A was associated specifically with asymmetrical synapses and localized to postsynaptic membranes. This information will facilitate future research on NMDARs by providing clues to possible inclusion of the NR3A subunit in NMDARs in many brain regions

    Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum

    No full text
    Abstract Bacterial remineralization of algal organic matter fuels algal growth but is rarely quantified. Consequently, we cannot currently predict whether some bacterial taxa may provide more remineralized nutrients to algae than others. Here, we quantified bacterial incorporation of algal-derived complex dissolved organic carbon and nitrogen and algal incorporation of remineralized carbon and nitrogen in fifteen bacterial co-cultures growing with the diatom Phaeodactylum tricornutum at the single-cell level using isotope tracing and nanoSIMS. We found unexpected strain-to-strain and cell-to-cell variability in net carbon and nitrogen incorporation, including non-ubiquitous complex organic nitrogen utilization and remineralization. We used these data to identify three distinct functional guilds of metabolic interactions, which we termed macromolecule remineralizers, macromolecule users, and small-molecule users, the latter exhibiting efficient growth under low carbon availability. The functional guilds were not linked to phylogeny and could not be elucidated strictly from metabolic capacity as predicted by comparative genomics, highlighting the need for direct activity-based measurements in ecological studies of microbial metabolic interactions

    Subthalamic Nucleus Deep Brain Stimulation Does Not Modify the Functional Deficits or Axonopathy Induced by Nigrostriatal α-Synuclein Overexpression

    No full text
    Abstract Subthalamic nucleus deep brain stimulation (STN DBS) protects dopaminergic neurons of the substantia nigra pars compacta (SNpc) against 6-OHDA and MPTP. We evaluated STN DBS in a parkinsonian model that displays α-synuclein pathology using unilateral, intranigral injections of recombinant adeno-associated virus pseudotype 2/5 to overexpress wildtype human α-synuclein (rAAV2/5 α-syn). A low titer of rAAV2/5 α-syn results in progressive forelimb asymmetry, loss of striatal dopaminergic terminal density and modest loss of SNpc dopamine neurons after eight weeks, corresponding to robust human-Snca expression and no effect on rat-Snca, Th, Bdnf or Trk2. α-syn overexpression increased phosphorylation of ribosomal protein S6 (p-rpS6) in SNpc neurons, a readout of trkB activation. Rats received intranigral injections of rAAV2/5 α-syn and three weeks later received four weeks of STN DBS or electrode implantation that remained inactive. STN DBS did not protect against α-syn-mediated deficits in forelimb akinesia, striatal denervation or loss of SNpc neuron, nor did STN DBS elevate p-rpS6 levels further. ON stimulation, forelimb asymmetry was exacerbated, indicating α-syn overexpression-mediated neurotransmission deficits. These results demonstrate that STN DBS does not protect the nigrostriatal system against α-syn overexpression-mediated toxicity. Whether STN DBS can be protective in other models of synucleinopathy is unknown

    De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one

    No full text
    Lynch syndrome is an autosomal dominant cancer predisposition syndrome classically caused by germline mutations of the mismatch repair genes, MLH1, MSH2, MSH6 and PMS2. Constitutional epimutations of the MLH1 gene, characterized by soma-wide methylation of a single allele of the promoter and allelic transcriptional silencing, have been identified in a subset of Lynch syndrome cases lacking a sequence mutation in MLH1. We report two individuals with no family history of colorectal cancer who developed that disease at age 18 and 20 years. In both cases, cancer had arisen because of the de novo occurrence of a constitutional MLH1 epimutation and somatic loss-of-heterozygosity of the functional allele in the tumors. We show for the first time that the epimutation in one case arose on the paternally inherited allele. Analysis of 13 tumors from seven individuals with constitutional MLH1 epimutations showed eight tumors had lost the second MLH1 allele, two tumors had a novel pathogenic missense mutation and three had retained heterozygosity. Only 1 of 12 tumors demonstrated the BRAF V600E mutation and 3 of 11 tumors harbored a mutation in KRAS. The finding that epimutations can originate on the paternal allele provides important new insights into the mechanism of origin of epimutations. It is clear that the second hit in MLH1 epimutation-associated tumors typically has a genetic not epigenetic basis. Individuals with mismatch repair-deficient cancers without the BRAF V600E mutation are candidates for germline screening for sequence or methylation changes in MLH1

    Hydrogen Sulfide--Mechanisms of Toxicity and Development of an Antidote.

    No full text
    Hydrogen sulfide is a highly toxic gas-second only to carbon monoxide as a cause of inhalational deaths. Its mechanism of toxicity is only partially known, and no specific therapy exists for sulfide poisoning. We show in several cell types, including human inducible pluripotent stem cell (hiPSC)-derived neurons, that sulfide inhibited complex IV of the mitochondrial respiratory chain and induced apoptosis. Sulfide increased hydroxyl radical production in isolated mouse heart mitochondria and F2-isoprostanes in brains and hearts of mice. The vitamin B12 analog cobinamide reversed the cellular toxicity of sulfide, and rescued Drosophila melanogaster and mice from lethal exposures of hydrogen sulfide gas. Cobinamide worked through two distinct mechanisms: direct reversal of complex IV inhibition and neutralization of sulfide-generated reactive oxygen species. We conclude that sulfide produces a high degree of oxidative stress in cells and tissues, and that cobinamide has promise as a first specific treatment for sulfide poisoning
    corecore