52 research outputs found
Control of germ-band retraction in Drosophila by the zinc-finger protein HINDSIGHT
Drosophila embryos lacking hindsight gene function have a
normal body plan and undergo normal germ-band
extension. However, they fail to retract their germ bands.
hindsight encodes a large nuclear protein of 1920 amino
acids that contains fourteen C2H2-type zinc fingers, and
glutamine-rich and proline-rich domains, suggesting that it
functions as a transcription factor. Initial embryonic
expression of hindsight RNA and protein occurs in the
endoderm (midgut) and extraembryonic membrane
(amnioserosa) prior to germ-band extension and continues
in these tissues beyond the completion of germ-band retraction. Expression also occurs in the developing tracheal system, central and peripheral nervous systems, and the ureter of the Malpighian tubules. Strikingly, hindsight is not expressed in the epidermal ectoderm which is the tissue that undergoes the cell shape changes and movements during germ-band retraction. The embryonic midgut can be eliminated without affecting germ-band retraction.
However, elimination of the amnioserosa results in the
failure of germ-band retraction, implicating amnioserosal
expression of hindsight as crucial for this process. Ubiquitous expression of hindsight in the early embryo rescues germ-band retraction without producing dominant gainof-function defects, suggesting that hindsight’s role in
germ-band retraction is permissive rather than instructive.
Previous analyses have shown that hindsight is required for
maintenance of the differentiated amnioserosa (Frank, L.
C. and Rushlow, C. (1996) Development 122, 1343-1352).
Two classes of models are consistent with the present data.
First, hindsight’s function in germ-band retraction may be
limited to maintenance of the amnioserosa which then plays
a physical role in the retraction process through contact
with cells of the epidermal ectoderm. Second, hindsight
might function both to maintain the amnioserosa and to
regulate chemical signaling from the amnioserosa to the
epidermal ectoderm, thus coordinating the cell shape
changes and movements that drive germ-band retraction
RNA localization in development
Cytoplasmic RNA localization is an evolutionarily ancient mechanism for producing cellular asymmetries. This review considers RNA localization in the context of animal development. Both mRNAs and non-protein-coding RNAs are localized in Drosophila, Xenopus, ascidian, zebrafish, and echinoderm oocytes and embryos, as well as in a variety of developing and differentiated polarized cells from yeast to mammals. Mechanisms used to transport and anchor RNAs in the cytoplasm include vectorial transport out of the nucleus, directed cytoplasmic transport in association with the cytoskeleton, and local entrapment at particular cytoplasmic sites. The majority of localized RNAs are targeted to particular cytoplasmic regions by cis-acting RNA elements; in mRNAs these are almost always in the 3'-untranslated region (UTR). A variety of trans-acting factors—many of them RNA-binding proteins—function in localization. Developmental functions of RNA localization have been defined in Xenopus, Drosophila, and Saccharomyces cerevisiae. In Drosophila, localized RNAs program the antero-posterior and dorso-ventral axes of the oocyte and embryo. In Xenopus, localized RNAs may function in mesoderm induction as well as in dorso-ventral axis specification. Localized RNAs also program asymmetric cell fates during Drosophila neurogenesis and yeast budding
Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells
Background: During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells. Results: We purified PGCs from Drosophila embryos, defined their proteome and transcriptome, and assessed the content, scale and dynamics of their MZT. Transcripts encoding proteins that implement particular types of biological functions group into nine distinct expression profiles, reflecting coordinate control at the transcriptional and posttranscriptional levels. mRNAs encoding germ-plasm components and cell-cell signaling molecules are rapidly degraded while new transcription produces mRNAs encoding the core transcriptional and protein synthetic machineries. The RNA-binding protein Smaug is essential for the PGC MZT, clearing transcripts encoding proteins that regulate stem cell behavior, transcriptional and posttranscriptional processes. Computational analyses suggest that Smaug and AU-rich element binding proteins function independently to control transcript elimination. Conclusions: The scale of the MZT is similar in the soma and PGCs. However, the timing and content of their MZTs differ, reflecting the distinct developmental imperatives of these cell types. The PGC MZT is delayed relative to that in the soma, likely because relief of PGC-specific transcriptional silencing is required for zygotic genome activation as well as for efficient maternal transcript clearance.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305391700004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Biotechnology & Applied MicrobiologyGenetics & HereditySCI(E)20ARTICLE2null1
The influence of microRNAs and poly(A) tail length on endogenous mRNA–protein complexes
Background: All mRNAs are bound in vivo by proteins to form mRNA-protein complexes (mRNPs), but changes in the composition of mRNPs during posttranscriptional regulation remain largely unexplored. Here, we have analyzed, on a transcriptome-wide scale, how microRNA-mediated repression modulates the associations of the core mRNP components eIF4E, eIF4G, and PABP and of the decay factor DDX6 in human cells. Results: Despite the transient nature of repressed intermediates, we detect significant changes in mRNP composition, marked by dissociation of eIF4G and PABP, and by recruitment of DDX6. Furthermore, although poly(A)-tail length has been considered critical in post-transcriptional regulation, differences in steady-state tail length explain little of the variation in either PABP association or mRNP organization more generally. Instead, relative occupancy of core components correlates best with gene expression. Conclusions: These results indicate that posttranscriptional regulatory factors, such as microRNAs, influence the associations of PABP and other core factors, and do so without substantially affecting steady-state tail length.National Institutes of Health (U.S.) (Grant K99GM102319)National Institutes of Health (U.S.) (Grant T32GM007753)National Institutes of Health (U.S.) (Grant R01GM067031)National Institutes of Health (U.S.) (Grant R35GM118135)Natural Sciences and Engineering Research Council of Canada (Discovery Grant
Regulation of the RNA-binding protein Smaug by the GPCR Smoothened via the kinase Fused
From fly to mammals, the Smaug/Samd4 family of prion-like RNA-binding proteins control gene expression by destabilizing and/or repressing the translation of numerous target transcripts. However, the regulation of its activity remains poorly understood. We show that Smaug's protein levels and mRNA repressive activity are downregulated by Hedgehog signaling in tissue culture cells. These effects rely on the interaction of Smaug with the G-protein coupled receptor Smoothened, which promotes the phosphorylation of Smaug by recruiting the kinase Fused. The activation of Fused and its binding to Smaug are sufficient to suppress its ability to form cytosolic bodies and to antagonize its negative effects on endogenous targets. Importantly, we demonstrate in vivo that HH reduces the levels of smaug mRNA and increases the level of several mRNAs downregulated by Smaug. Finally, we show that Smaug acts as a positive regulator of Hedgehog signaling during wing morphogenesis. These data constitute the first evidence for a post-translational regulation of Smaug and reveal that the fate of several mRNAs bound to Smaug is modulated by a major signaling pathway.Fil: Bruzzone, Lucia. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Argüelles, Camilla. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Sanial, Matthieu. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Miled, Samia. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Alvisi, Giorgia. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Gonçalves Antunes, Marina. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Qasrawi, Fairouz. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Holmgren, Robert A.. Northwestern University; Estados UnidosFil: Smibert, Craig A. University of Toronto; CanadáFil: Lipshitz, Howard D.. University of Toronto; CanadáFil: Boccaccio, Graciela Lidia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Plessis, Anne. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Bécam, Isabelle. Centre National de la Recherche Scientifique; Francia. Universite de Paris; Franci
Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors
Small non-coding RNAs called piRNAs serve as guides for an adaptable immune system that represses transposable elements in germ cells of Metazoa. In Drosophila the RDC complex, composed of Rhino, Deadlock and Cutoff (Cuff) bind chromatin of dual-strand piRNA clusters, special genomic regions, which encode piRNA precursors. The RDC complex is required for transcription of piRNA precursors, though the mechanism by which it licenses transcription remained unknown. Here, we show that Cuff prevents premature termination of RNA polymerase II. Cuff prevents cleavage of nascent RNA at poly(A) sites by interfering with recruitment of the cleavage and polyadenylation specificity factor (CPSF) complex. Cuff also protects processed transcripts from degradation by the exonuclease Rat1. Our work reveals a conceptually different mechanism of transcriptional enhancement. In contrast to other factors that regulate termination by binding to specific signals on nascent RNA, the RDC complex inhibits termination in a chromatin-dependent and sequence-independent manner
Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors
Small non-coding RNAs called piRNAs serve as guides for an adaptable immune system that represses transposable elements in germ cells of Metazoa. In Drosophila the RDC complex, composed of Rhino, Deadlock and Cutoff (Cuff) bind chromatin of dual-strand piRNA clusters, special genomic regions, which encode piRNA precursors. The RDC complex is required for transcription of piRNA precursors, though the mechanism by which it licenses transcription remained unknown. Here, we show that Cuff prevents premature termination of RNA polymerase II. Cuff prevents cleavage of nascent RNA at poly(A) sites by interfering with recruitment of the cleavage and polyadenylation specificity factor (CPSF) complex. Cuff also protects processed transcripts from degradation by the exonuclease Rat1. Our work reveals a conceptually different mechanism of transcriptional enhancement. In contrast to other factors that regulate termination by binding to specific signals on nascent RNA, the RDC complex inhibits termination in a chromatin-dependent and sequence-independent manner
Genes, Development, and Cancer: The Life and Work of Edward B. Lewis
Edward B. Lewis' science is the bridge linking experimental genetics as conducted in the first half of the twentieth century, and the powerful molecular genetic approaches that revolutionized the field in its last quarter. His Nobel Prize winning studies founded the field of developmental genetics and laid the groundwork for our current understanding of the universal, evolutionarily conserved strategies controlling animal development. A lesser-known aspect of Lewis' canon is the pioneering studies he carried out on ionizing radiation and human cancer. In doing so, he was propelled into a public storm over nuclear weapons testing policy. For the first time Lewis' key publications in the fields of genetics, developmental biology, radiation and cancer are compiled within one volume
Role of the Amnioserosa in Germ Band Retraction of the Drosophila melanogaster Embryo
AbstractAs the germ band shortens in Drosophila melanogaster embryos, cell shape changes cause segments to narrow anteroposteriorly and to lengthen dorsoventrally. One of the genes required for this retraction process is the hindsight (hnt) gene. hnt encodes a nuclear Zinc-finger protein that is expressed in the extraembryonic amnioserosa and the endodermal midgut prior to and during germ band retraction (M. L. R. Yip, M. L. Lamka, and H. D. Lipshitz, 1997, Development 124, 2129–2141). Here we show, through analysis of hnt genetic mosaic embryos, that hnt activity in the amnioserosa—particularly in those cells that are adjacent to the epidermis—is necessary for germ band retraction. In hnt mutant embryos the amnioserosa undergoes premature cell death (L. C. Frank and C. Rushlow, 1996, Development 122, 1343–1352). We demonstrate that prevention of premature apoptosis in hnt mutants does not rescue retraction. Thus, failure of this process is not an indirect consequence of premature amnioserosal apoptosis; instead, hnt must function in a pathway that controls germ band retraction. We show that the Krüppel gene is activated by hnt in the amnioserosa while the Drosophila insulin receptor (INR) functions downstream of hnt in the germ band. We present evidence against a physical model in which the amnioserosa “pushes” the germ band during retraction. Rather, it is likely that the amnioserosa functions in production, activation, or presentation of a diffusible signal required for retraction
- …