8 research outputs found

    Central processes amplify and transform anisotropies of the visual system in a test of visual-haptic coordination.

    No full text
    The CNS may use multimodal reference frames to combine proprioceptive, visual, and gravitational information. Indeed, spatial information could be encoded simultaneously with respect to egocentric and allocentric references such as the body axis and gravity, respectively. It has further been proposed that gravity might serve to align reference frames between different sensory modalities. We performed a series of experiments in which human subjects matched the orientation of a visual stimulus to a visual reference (visual-visual), a haptic stimulus to a haptic reference (haptic-haptic), or a visual stimulus to a haptic reference (visual-haptic). These tests were performed in a normal upright posture, with the body tilted with respect to gravity, and in the weightless environment of Earth orbit. We found systematic patterns of errors in the matching of stimulus orientations. For an upright posture on Earth, a classic oblique effect appeared in the visual-visual comparison, which was then amplified in the haptic-visual task. Leftward or rightward whole-body tilt on Earth abolished both of these effects, yet each persisted in the absence of gravity. Leftward and rightward tilt also produced asymmetric biases in the visual-haptic but not in the visual-visual or haptic-haptic responses. These results illustrate how spatial anisotropy can be molded by sensorimotor transformations in the CNS. Furthermore, the results indicate that gravity plays a significant, but nonessential role in defining the reference frames for these tasks. These results provide insight into how the nervous system processes spatial information between different sensory modalities

    Two reference frames for visual perception in two gravity conditions.

    No full text
    The processing and storage of visual information concerning the orientation of objects in space is carried out in anisotropic reference frames in which all orientations are not treated equally. The perceptual anisotropies, and the implicit reference frames that they define, are evidenced by the observation of 'oblique effects' in which performance on a given perceptual task is better for horizontally and vertically oriented stimuli. The question remains how the preferred horizontal and vertical reference frames are defined. In these experiments cosmonaut subjects reproduced the remembered orientation of a visual stimulus in 1g (on the ground) and in 0g, both attached to a chair and while free-floating within the International Space Station. Results show that while the remembered orientation of a visual stimulus may be stored in a multimodal reference frame that includes gravity, an egocentric reference is sufficient to elicit the oblique effect when all gravitational and haptic cues are absent.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Weightlessness alters up/down asymmetries in the perception of self-motion

    No full text
    In the present study, we investigated the effect of weightlessness on the ability to perceive and remember self-motion when passing through virtual 3D tunnels that curve in different direction (up, down, left, right). We asked cosmonaut subjects to perform the experiment before, during and after long-duration space flight aboard the International Space Station (ISS), and we manipulated vestibular versus haptic cues by having subjects perform the task either in a rigidly fixed posture with respect to the space station or during free-floating, in weightlessness. Subjects were driven passively at constant speed through the virtual 3D tunnels containing a single turn in the middle of a linear segment, either in pitch or in yaw, in increments of 12.5. After exiting each tunnel, subjects were asked to report their perception of the turn's angular magnitude by adjusting, with a trackball, the angular bend in a rod symbolizing the outside view of the tunnel. We demonstrate that the strong asymmetry between downward and upward pitch turns observed on Earth showed an immediate and significant reduction when free-floating in weightlessness and a delayed reduction when the cosmonauts were firmly in contact with the floor of the station. These effects of weightlessness on the early processing stages (vestibular and optokinetics) that underlie the perception of self-motion did not stem from a change in alertness or any other uncontrolled factor in the ISS, as evidenced by the fact that weightlessness had no effect on the perception of yaw turns. That the effects on the perception of pitch may be partially overcome by haptic cues reflects the fusion of multisensory cues and top-down influences on visual perception. © 2013 Springer-Verlag Berlin Heidelberg.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction.

    No full text
    Electroencephalographic oscillations at 10 Hz (alpha and mu rhythms) are the most prominent rhythms observed in awake, relaxed (eye-closed) subjects. These oscillations may be considered as a marker of cortical inactivity or an index of the active inhibition of the sensory information. Different cortical sources may participate in the 10-Hz oscillation and appear to be modulated by the sensory context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect the 10-Hz activity. The effect of microgravity on this basic oscillation has heretofore not been studied quantitatively. Because the alpha rhythm has a functional role in the regulation of network properties of the visual areas, we hypothesised that the absence of gravity would affect its strength. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the 10-Hz activity in relation to the arrest reaction (i.e. in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous 10-Hz oscillation recorded in the eyes-closed state in the parieto-occipital (alpha rhythm) and sensorimotor areas (mu rhythm) increased in the absence of gravity. The suppression coefficient during the arrest reaction and the related spectral perturbations produced by eye-opening/closure state transition also increased in on orbit. These results are discussed in terms of current theories on the source and the importance of the alpha rhythm for cognitive function.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction.

    No full text
    Electroencephalographic oscillations at 10 Hz (alpha and mu rhythms) are the most prominent rhythms observed in awake, relaxed (eye-closed) subjects. These oscillations may be considered as a marker of cortical inactivity or an index of the active inhibition of the sensory information. Different cortical sources may participate in the 10-Hz oscillation and appear to be modulated by the sensory context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect the 10-Hz activity. The effect of microgravity on this basic oscillation has heretofore not been studied quantitatively. Because the alpha rhythm has a functional role in the regulation of network properties of the visual areas, we hypothesised that the absence of gravity would affect its strength. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the 10-Hz activity in relation to the arrest reaction (i.e. in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous 10-Hz oscillation recorded in the eyes-closed state in the parieto-occipital (alpha rhythm) and sensorimotor areas (mu rhythm) increased in the absence of gravity. The suppression coefficient during the arrest reaction and the related spectral perturbations produced by eye-opening/closure state transition also increased in on orbit. These results are discussed in terms of current theories on the source and the importance of the alpha rhythm for cognitive function.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore