1,041 research outputs found

    Dirac cones in two-dimensional borane

    Get PDF
    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to Density Functional Theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy EfE_f. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene (Science \textbf{350}, 1513 (2015)). Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ{\sigma} bonds. Finally, we suggest high-pressure could be a feasible route to synthesise two-dimensional borane.Comment: 5 pages, 3 figures, 1 tabl

    Does the South Carolina Upstate have \u27Isolated Wetlands\u27 and how do they Function? A Prelimiary Analysisn

    Get PDF
    2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur

    Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units

    Get PDF
    <p>Background: The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. Methods</p> <p>The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate.</p> <p>Results: Residual protein was detected on 72% (n = 136) of instruments reprocessed centrally and 90% (n = 170) of instruments reprocessed locally. Significantly less protein (p < 0.001) was recovered from instruments reprocessed centrally (median 20.62 Îźg, range 0 - 5705 Îźg) than local reprocessing (median 111.9 Îźg, range 0 - 6344 Îźg).</p> <p>Conclusions: Overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency.</p&gt

    Intraoperative and major postoperative complications and survival of dogs undergoing surgical management of epiglottic retroversion: 50 dogs (2003-2017)

    Get PDF
    Objective: To report intraoperative and major postoperative complications in dogs treated surgically for epiglottic retroversion (ER), compare the incidence of major postoperative complications between procedures, and report survival of surgically treated dogs. Study design: Multi-institutional retrospective study. Sample population: Fifty dogs treated with 78 procedures. Methods: Medical records of dogs diagnosed and surgically treated for ER from 2003 to 2017 at 11 institutions were reviewed. Complications were divided into intraoperative and major postoperative complications. Results: Intraoperative complications occurred during 2 of 78 (2.6%) procedures. Thirty-six major postoperative complications were documented in 22 dogs after 36 of 74 (48.7%) procedures. Postoperative complications occurred after 7 of 12 (58.3%) nonincisional epiglottopexy, 23 of 43 (53.5%) incisional epiglottopexy, 2 of 4 (50%) partial epiglottectomy, 2 of 12 (16.7%) subtotal epiglottectomy, and 2 of 3 (66.7%) other surgical procedures. Epiglottopexy failure was the most common major postoperative complication. The incidence of major postoperative complications did not differ between procedures (P =.1239), although, when combined, epiglottopexy procedures (30/55) had a higher incidence of complications than epiglottectomy procedures (4/16; P =.048). Thirty (60%) dogs were alive at a median of 928 days (range, 114-2805), 8 (16%) were lost to follow-up after 411 days (range, 43-1158), and 12 (24%) were dead/euthanized after 301.5 days (range, 3-1212). Median survival time was not reached after a median of 716 days. Conclusion: Although intraoperative complications were uncommon, major postoperative complications were common, especially after epiglottopexy procedures. Clinical significance: Although surgical treatment of ER is associated with a high rate of major postoperative complications, especially epiglottopexy procedures, long-term survival can be achieved

    MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids

    Get PDF
    We introduce MPAS-Albany Land Ice (MALI) v6.0, a new variable-resolution land ice model that uses unstructured Voronoi grids on a plane or sphere. MALI is built using the Model for Prediction Across Scales (MPAS) framework for developing variable-resolution Earth system model components and the Albany multi-physics code base for the solution of coupled systems of partial differential equations, which itself makes use of Trilinos solver libraries. MALI includes a three-dimensional first-order momentum balance solver (Blatter–Pattyn) by linking to the Albany-LI ice sheet velocity solver and an explicit shallow ice velocity solver. The evolution of ice geometry and tracers is handled through an explicit first-order horizontal advection scheme with vertical remapping. The evolution of ice temperature is treated using operator splitting of vertical diffusion and horizontal advection and can be configured to use either a temperature or enthalpy formulation. MALI includes a mass-conserving subglacial hydrology model that supports distributed and/or channelized drainage and can optionally be coupled to ice dynamics. Options for calving include eigencalving, which assumes that the calving rate is proportional to extensional strain rates. MALI is evaluated against commonly used exact solutions and community benchmark experiments and shows the expected accuracy. Results for the MISMIP3d benchmark experiments with MALI's Blatter–Pattyn solver fall between published results from Stokes and L1L2 models as expected. We use the model to simulate a semi-realistic Antarctic ice sheet problem following the initMIP protocol and using 2&thinsp;km resolution in marine ice sheet regions. MALI is the glacier component of the Energy Exascale Earth System Model (E3SM) version 1, and we describe current and planned coupling to other E3SM components.</p

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article
    • …
    corecore