31 research outputs found

    Development of 3D CAD/FEM Analysis System for Natural Teeth and Jaw Bone Constructed from X-Ray CT Images

    Get PDF
    A three-dimensional finite element model of the lower first premolar, with the three layers of enamel, dentin, and pulp, and the mandible, with the two layers of cortical and cancellous bones, was directly constructed from noninvasively acquired CT images. This model was used to develop a system to analyze the stresses on the teeth and supporting bone structure during occlusion based on the finite element method and to examine the possibility of mechanical simulation

    Fracture load of tooth restored with fiber post and experimental short fiber composite

    Get PDF
    PURPOSE: This study evaluated the load bearing capacity of anatomically designed canines restored with FRC posts and experimental short fiber composite resin (FC). The effect of using three different types of tooth preparation and woven net on the fracture load was also investigated. Further aim was to evaluate the failure mode of each restoration. MATERIAL AND METHODS: 80 maxillary frasaco-canines were divided into 10 groups (n=8). The anatomic crowns were cut perpendicular at CEJ of the tooth. Group 1 was composed of teeth with flattened surface. Groups 2, 3 & 4 were prepared of teeth with 2 mm ferrule. In the third group, everStick Net was applied above the ferrule. Group 5 was composed of teeth with large box type preparation. The root canals were enlarged, sandblasted and then surface treated with Stick resin for 5 min. Two types of FRC root canal posts were used. The crowns were prepared either with composite resin or with FC. A static load until failure was applied to the crowns at a 45 degrees angle. Failure modes were visually examined. RESULTS: ANOVA revealed that use of FRC-post and tooth preparation (p0.001). Chi-square test revealed that both, crown design and existence of FRC-post effected significantly fracture types (p CONCLUSION: FC demonstrated similar load bearing capacity with restorations reinforced with FRC post. The presence of ferrule around the tooth increased the load bearing capacity significantly. ABBREVIATIONS: EET - endodontically treated teeth; FRC - fiber-reinforced composite; semi-IPN - semi-interpenetrating network; CEJ - cementoenamel junction; FC - experimental short fiber composite; SiC - silicon carbide abrasive paper; N - newton; FEM - finite element method. KEYWORDS: Experimental fiber-reinforced composite; Fracture load.; Individually formed fiber-post</p

    In Vitro Repair of Fractured Fiber-Reinforced Cusp-Replacing Composite Restorations

    Get PDF
    Objective. To assess fracture resistance and failure mode of repaired fiber-reinforced composite (FRC) cusp-replacing restorations. Methods. Sixteen extracted human premolars with fractured cusp-replacing woven (Group (A)) or unidirectional (Group (B)) FRC restorations from a previous loading experiment were repaired with resin composite and loaded to fracture. Results. Differences in fracture loads between groups were not statistically significant (P = 0.34). Fracture loads of repaired specimens were significantly lower than those of original specimens (P = 0.02 for Group (A) and P < 0.001 for Group (B)). Majority of specimens showed failure along the repaired surface. In Group (B) 89% of specimens showed intact tooth substrate after restoration fracture, while this was 28% in Group (A) (P = 0.04). Conclusion. Fractured cusp-replacing FRC restorations that are repaired with resin composite show about half of fracture resistance of original restorations. Mode of failure with a base of unidirectional fibers is predominantly adhesive

    Midline denture base strains of glass fiber-reinforced single implant-supported overdentures

    Get PDF
    Statement of problemThe fracture incidence of implant-supported overdentures is more frequent in the area of attachment because of stress concentration and denture deformation in this area. How E-glass fiber reinforcement can address this problem is unclear.PurposeThe purpose of this in vitro study was to evaluate the influence of unidirectional E-glass fiber reinforcement on the mid-line denture base strains of single implant-supported overdentures.Material and methodsAn experimental acrylic resin cast was constructed with a single implant placed in the mid-line area and a ball attachment screwed to the implant. Twenty-four experimental overdentures were constructed and divided into 4 groups: group AP fabricated from autopolymerizing acrylic resin without fiber reinforcement, group APF fabricated from autopolymerizing acrylic resin with unidirectional E-glass fiber reinforcement running over the residual ridge and the ball matrix, group HP fabricated from heat-polymerized acrylic resin without fiber reinforcement, and group HPF fabricated from heat-polymerized acrylic resin with unidirectional E-glass fiber reinforcement running over the residual ridge and the ball matrix. A biaxial rosette strain gauge was attached to the incisor areas of each overdenture above the attachment level (Ch1, Ch2) and to a multichannel digital strain meter. A static vertical load of 100 N was applied to the first molar area bilaterally by using a universal testing device during strain measurement procedures. The differences in the mean strain and deflection values among the investigated groups were evaluated for statistical significance using 1-way analysis of variance (ANOVA) with the Tukey post hoc multiple comparison (α=.05).ResultsThe type of acrylic resin did not have a statistically significant effect on the mean strain values among groups (P=.350), while the reinforcement did significantly affect them (PConclusionsUnidirectional E-glass fiber reinforcement placed over the residual ridge and implant attachment significantly reduced denture base strains and deformation of single implant-supported overdentures.</p

    A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbable Bioactive Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates

    Get PDF
    The use of bioresorbable fracture fixation plates made of aliphatic polyesters have good potential due to good biocompatibility, reduced risk of stress-shielding, and eliminated need for plate removal. However, polyesters are ductile, and their handling properties are limited. We suggested an alternative, PLAMA (PolyLActide functionalized with diMethAcrylate), for the use as the matrix phase for the novel concept of the in situ curable bioresorbable load-bearing composite plate to reduce the limitations of conventional polyesters. The purpose was to obtain a preliminary understanding of the chemical and physical properties and the biological safety of PLAMA from the prospective of the novel concept. Modifications with different molecular masses (PLAMA-500 and PLAMA-1000) were synthesized. The efficiency of curing was assessed by the degree of convergence (DC). The mechanical properties were obtained by tensile test and thermomechanical analysis. The bioresorbability was investigated by immersion in simulated body fluid. The biocompatibility was studied in cell morphology and viability tests. PLAMA-500 showed better DC and mechanical properties, and slower bioresorbability than PLAMA-1000. Both did not prevent proliferation and normal morphological development of cells. We concluded that PLAMA-500 has potential for the use as the matrix material for bioresorbable load-bearing composite fracture fixation plates

    The effect of smear layer removal on E faecalis leakage and bond strength of four resin-based root canal sealers

    Get PDF
    Background: The aim of the study was to assess bacterial sealability and bonding ability of methacrylate-based Resilon (RS, SybronEndo), Endo Rez (ER, Ultradent Products Inc), and epoxy-based AH Plus (AH, Dentsply/DeTrey), MTA Fill Apex (MTAF, Angelus Solucoes Odontologicas) root canal sealers, and the effect of the smear layer removal on the sealability.Methods: One hundred thirty root segments were instrumented up to apical size #60 and rinsed with 2.5% NaOCl. Half of the roots were rinsed with 5ml 17% EDTA to remove the smear layer. All the roots were filled with AH, ER, MTAF sealers and gutta-percha, or RS with Resilon cones. After storage at 37 degrees C for 7 days the samples were mounted into bacterial leakage assay for 50 days.Another 100 roots were instrumented and rinsed as described above, split longitudinally, cut into the cervical, middle and apical parts. The sealers were injected through the plastic mould on the dentin surface. After 7 days of incubation at 37 degrees C, bond strength was tested using a notched-edge test fixture (Crosshead, Ultradent Products Inc.) and a universal testing machine (Lloyd Instruments).Results: AH revealed the longest mean time for bacterial resistance by 29.4 and 36.8 days (with and without smear layer, respectively) followed by RS (15.1 and 24.7 days, respectively). The difference between materials was significant (pBond strength values ranged from 0.2 0.1 to 3.5 +/- 0.7 MPa and increased from the apical to the cervical third. In the apical third, AH showed the highest mean (SD) bond values 1.4 (0.4) MPa and 1.7 (0.6) MPa (with and without smear, respectively, followed by RS, 0.5 (0.1) MPa and 0.8 (0.1) MPa, respectively. The difference between materials was significant (p=0.001).Conclusion: The effect of the smear layer removal on the sealability was material-dependent.</div

    Effect of Interpenetrating Polymer Network (IPN) Thermoplastic Resin on Flexural Strength of Fibre-Reinforced Composite and the Penetration of Bonding Resin into Semi-IPN FRC Post

    Get PDF
    The purpose of this study was to evaluate the effects of interpenetrating polymer network (IPN) thermoplastic resin on the flexural strength of fibre-reinforced composite (FRC) with different IPN polymer compositions. The penetration of bonding resin into semi-IPN FRC posts was also evaluated. The IPN thermoplastic resin used was UDMA-MMA monomer with either PMMA (0.5%, 2%, 5%) or PMMA-copolymer (0.5%, 2%). A no added IPN polymer resin was also made. Mixed resin was impregnated to S- and E-glass fibre rovings. These resins and resin impregnated fibres were used for flexural strength (FS) test. To evaluate the penetration of bonding resin into semi-IPN post, SEM observation was done with various impregnation time and polymerization mehods (hand-light- and oven-cure). The result of FS was recorded from 111.7 MPa (no-IPN polymer/no-fibre-reinforcement) to 543.0 MPa (5% PMMA/S-glass FRC). ANOVA showed that there were significant differences between fibre-reinforcement and no-fibre-reinforcement (p < 0.01) both in S- and E-glass fibre groups, and between 0.5% PMMA and 5% PMMA in the S-glass FRC group. SEM micrographs showed that the penetration layers of bonding resin into hand-light cured semi-IPN posts were different according to impregnation time. Fibre reinforcement is effective to improve flexural strength. The depth of penetration layer of bonding resin into semi-IPN matrix resin was improved when a hand-light cure was used

    Travel beyond Clinical Uses of Fiber Reinforced Composites (FRCs) in Dentistry: A Review of Past Employments, Present Applications, and Future Perspectives

    Get PDF
    The reinforcement of resins with short or long fibers has multiple applications in various engineering and biomedical fields. The use of fiber reinforced composites (FRCs) in dentistry has been described in the literature from more than 40 years. In vitro studies evaluated mechanical properties such as flexural strength, fatigue resistance, fracture strength, layer thickness, bacterial adhesion, bonding characteristics with long fibers, woven fibers, and FRC posts. Also, multiple clinical applications such as replacement of missing teeth by resin-bonded adhesive fixed dental prostheses of various kinds, reinforcement elements of dentures or pontics, and direct construction of posts and cores have been investigated. In orthodontics, FRCs have been used also for active and passive orthodontic applications, such as anchorage units, en-masse movement units, and postorthodontic tooth retention. FRCs have been extensively tested in the literature, but today the advances in new technologies involving the introduction of nanofillers or new fibers along with understanding the design principles of FRC devices open new fields of research for these materials both in vitro and in vivo. The present review describes past and present applications of FRCs and introduces some future perspectives on the use of these materials

    Effect of Long-Term Brushing on Deflection, Maximum Load, and Wear of Stainless Steel Wires and Conventional and Spot Bonded Fiber-Reinforced Composites

    Get PDF
    Fiber-reinforced composite (FRC) retainers are an aesthetic alternative to conventional Stainless Steel splints. They are generally used with a full bonded technique, but some studies demonstrated that they could be managed with a spot bonding technique to significantly decrease their rigidity. In order to propose this FRC spot bonding technique for clinical use, the aim of this study was to evaluate mechanical properties and surface wear of fibers left uncovered. Tests were made by simulating tooth brushing, comparing FRC spot bonding technique splints with stainless steel and FRC traditional technique splints. Specimens were tested both at 0.1 mm of deflection and at maximum load, showing higher values of rigidity for the FRC full bonded technique. After tooth brushing, no significant reduction in values at 0.1 mm deflection was reported, while we found a similar reduction in these values for the Stainless Steel and FRC spot bonding technique at maximum load, and no significant variation for the FRC full bonded technique. SEM images after tooth brushing showed wear for FRC fibers left uncovered, while no relevant wear signs in metal and conventional FRC fibers were noticed. Results showed that FRC spot bonding technique has advantages in mechanical properties when compared to the FRC traditional full bonding technique, also after tooth brushing. However, the surface wear after tooth brushing in the FRC spot bonding technique is considerable and other tests must be performed before promoting this technique for routine clinical use
    corecore