224 research outputs found

    Memory in Self Organized Criticality

    Full text link
    Many natural phenomena exhibit power law behaviour in the distribution of event size. This scaling is successfully reproduced by Self Organized Criticality (SOC). On the other hand, temporal occurrence in SOC models has a Poisson-like statistics, i.e. exponential behaviour in the inter-event time distribution, in contrast with experimental observations. We present a SOC model with memory: events are nucleated not only as a consequence of the instantaneous value of the local field with respect to the firing threshold, but on the basis of the whole history of the system. The model is able to reproduce the complex behaviour of inter-event time distribution, in excellent agreement with experimental seismic data

    Gait generation for underactuated compass-like robots using dissipative forces in the controller

    Get PDF
    This work addresses the problem of gait generation in underactuated compass-like biped robots using dissipative forces in the controller. Three different controllers are presented. The first one is a simultaneous interconnection and damping assignment passivity-based control with dissipative forces. The second one is an energy pumping-and-damping control, while the third one is an energy pumping or damping control action. Numerical case studies, comparisons, and critical discussions evaluate the performance of the proposed approaches

    Crossover in Growth Law and Violation of Superuniversality in the Random Field Ising Model

    Full text link
    We study the nonconserved phase ordering dynamics of the d = 2, 3 random field Ising model, quenched to below the critical temperature. Motivated by the puzzling results of previous work in two and three di- mensions, reporting a crossover from power-law to logarithmic growth, together with superuniversal behavior of the correlation function, we have undertaken a careful investigation of both the domain growth law and the autocorrelation function. Our main results are as follows: We confirm the crossover to asymptotic logarithmic behavior in the growth law, but, at variance with previous findings, the exponent in the preasymptotic power law is disorder-dependent, rather than being the one of the pure system. Furthermore, we find that the autocorre- lation function does not display superuniversal behavior. This restores consistency with previous results for the d = 1 system, and fits nicely into the unifying scaling scheme we have recently proposed in the study of the random bond Ising model.Comment: To be published in Physical Review

    The influence of the brittle-ductile transition zone on aftershock and foreshock occurrence

    Get PDF
    Aftershock occurrence is characterized by scaling behaviors with quite universal exponents. At the same time, deviations from universality have been proposed as a tool to discriminate aftershocks from foreshocks. Here we show that the change in rheological behavior of the crust, from velocity weakening to velocity strengthening, represents a viable mechanism to explain statistical features of both aftershocks and foreshocks. More precisely, we present a model of the seismic fault described as a velocity weakening elastic layer coupled to a velocity strengthening visco-elastic layer. We show that the statistical properties of aftershocks in instrumental catalogs are recovered at a quantitative level, quite independently of the value of model parameters. We also find that large earthquakes are often anticipated by a preparatory phase characterized by the occurrence of foreshocks. Their magnitude distribution is significantly flatter than the aftershock one, in agreement with recent results for forecasting tools based on foreshocks

    Test of Local Scale Invariance from the direct measurement of the response function in the Ising model quenched to and to below TCT_C

    Full text link
    In order to check on a recent suggestion that local scale invariance [M.Henkel et al. Phys.Rev.Lett. {\bf 87}, 265701 (2001)] might hold when the dynamics is of Gaussian nature, we have carried out the measurement of the response function in the kinetic Ising model with Glauber dynamics quenched to TCT_C in d=4d=4, where Gaussian behavior is expected to apply, and in the two other cases of the d=2d=2 model quenched to TCT_C and to below TCT_C, where instead deviations from Gaussian behavior are expected to appear. We find that in the d=4d=4 case there is an excellent agreement between the numerical data, the local scale invariance prediction and the analytical Gaussian approximation. No logarithmic corrections are numerically detected. Conversely, in the d=2d=2 cases, both in the quench to TCT_C and to below TCT_C, sizable deviations of the local scale invariance behavior from the numerical data are observed. These results do support the idea that local scale invariance might miss to capture the non Gaussian features of the dynamics. The considerable precision needed for the comparison has been achieved through the use of a fast new algorithm for the measurement of the response function without applying the external field. From these high quality data we obtain a=0.27±0.002a=0.27 \pm 0.002 for the scaling exponent of the response function in the d=2d=2 Ising model quenched to below TCT_C, in agreement with previous results.Comment: 24 pages, 6 figures. Resubmitted version with improved discussions and figure

    Nonlinear response and fluctuation dissipation relations

    Full text link
    A unified derivation of the off equilibrium fluctuation dissipation relations (FDR) is given for Ising and continous spins to arbitrary order, within the framework of Markovian stochastic dynamics. Knowledge of the FDR allows to develop zero field algorithms for the efficient numerical computation of the response functions. Two applications are presented. In the first one, the problem of probing for the existence of a growing cooperative length scale is considered in those cases, like in glassy systems, where the linear FDR is of no use. The effectiveness of an appropriate second order FDR is illustrated in the test case of the Edwards-Anderson spin glass in one and two dimensions. In the second one, the important problem of the definition of an off equilibrium effective temperature through the nonlinear FDR is considered. It is shown that, in the case of coarsening systems, the effective temperature derived from the second order FDR is consistent with the one obtained from the linear FDR.Comment: 24 pages, 6 figure

    Coexistence of coarsening and mean field relaxation in the long-range Ising chain

    Get PDF
    We study the kinetics after a low temperature quench of the one-dimensional Ising model with long range interactions between spins at distance r decaying as r-α. For α = 0, i.e. mean field, all spins evolve coherently quickly driving the system towards a magnetised state. In the weak long range regime with α > 1 there is a coarsening behaviour with competing domains of opposite sign without development of magnetisation. For strong long range, i.e. 0 < α < 1, we show that the system shows both features, with probability Pα(N) of having the latter one, with the different limiting behaviours limN→∞ Pα(N) = 0 (at fixed α < 1) and limα→1 Pα(N) = 1 (at fixed finite N). We discuss how this behaviour is a manifestation of an underlying dynamical scaling symmetry due to the presence of a single characteristic time τα(N) ∼ Nα

    A Flexible Robotic Depalletizing System for Supermarket Logistics

    Get PDF
    Depalletizing robotic systems are commonly deployed to automatize and speed-up parts of logistic processes. Despite this, the necessity to adapt the preexisting logistic processes to the automatic systems often impairs the application of such robotic solutions to small business realities like supermarkets. In this work we propose a robotic depalletizing system designed to be easily integrated into supermarket logistic processes. The system has to schedule, monitor and adapt the depalletizing process considering both on-line perceptual information given by non-invasive sensors and constraints provided by the high-level management system or by a supervising user. We describe the overall system discussing two case studies in the context of a supermarket logistic process. We show how the proposed system can manage multiple depalletizing strategies and multiple logistic requests
    • …
    corecore