64 research outputs found

    Evolution of the electronic structure with size in II-VI semiconductor nanocrystals

    Get PDF
    In order to provide a quantitatively accurate description of the band gap variation with sizes in various II-VI semiconductor nanocrystals, we make use of the recently reported tight-binding parametrization of the corresponding bulk systems. Using the same tight-binding scheme and parameters, we calculate the electronic structure of II-VI nanocrystals in real space with sizes ranging between 5 and 80 {\AA} in diameter. A comparison with available experimental results from the literature shows an excellent agreement over the entire range of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    Electron-Hole Correlations and Optical Excitonic Gaps in Quantum-Dot Quantum Wells: Tight-Binding Approach

    Full text link
    Electron-hole correlation in quantum-dot quantum wells (QDQW's) is investigated by incorporating Coulomb and exchange interactions into an empirical tight-binding model. Sufficient electron and hole single-particle states close to the band edge are included in the configuration to achieve convergence of the first spin-singlet and triplet excitonic energies within a few meV. Coulomb shifts of about 100 meV and exchange splittings of about 1 meV are found for CdS/HgS/CdS QDQW's (4.7 nm CdS core diameter, 0.3 nm HgS well width and 0.3 nm to 1.5 nm CdS clad thickness) which have been characterized experimentally by Weller and co-workers [ D. Schooss, A. Mews, A. Eychmuller, H. Weller, Phys. Rev. B, 49, 17072 (1994)]. The optical excitonic gaps calculated for those QDQW's are in good agreement with the experiment.Comment: 3 figures, to appear in Phys.Rev.

    Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    Get PDF
    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism

    Mössbauer spectroscopy and new composite electrodes for Li-ion batteries

    No full text

    Electronic structure of Sn doped TiO2

    No full text
    International audienc

    119Sn Mössbauer study of nickel-tin anodes for rechargeable lithium-ion batteries

    No full text
    International audienc
    corecore