90 research outputs found
Complex temporal climate signals drive the emergence of human water-borne disease
Predominantly occurring in developing parts of the world, Buruli ulcer is a severely disabling mycobacterium infection which often leads to extensive necrosis of the skin. While the exact route of transmission remains uncertain, like many tropical diseases, associations with climate have been previously observed and could help identify the causative agent's ecological niche. In this paper, links between changes in rainfall and outbreaks of Buruli ulcer in French Guiana, an ultraperipheral European territory in the northeast of South America, were identified using a combination of statistical tests based on singular spectrum analysis, empirical mode decomposition and cross-wavelet coherence analysis. From this, it was possible to postulate for the first time that outbreaks of Buruli ulcer can be triggered by combinations of rainfall patterns occurring on a long (i.e., several years) and short (i.e., seasonal) temporal scale, in addition to stochastic events driven by the El Nino-Southern Oscillation that may disrupt or interact with these patterns. Long-term forecasting of rainfall trends further suggests the possibility of an upcoming outbreak of Buruli ulcer in French Guiana
Epistatic Association Mapping in Homozygous Crop Cultivars
The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM) approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs), environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted
Surveillance of dengue fever virus: A review of epidemiological models and early warning systems
Dengue fever is one of the worldβs most important vector-borne diseases. The transmission area of this disease continues to expand due to many factors including urban sprawl, increased travel and global warming. Current preventative techniques are primarily based on controlling mosquito vectors as other prophylactic measures, such as a tetravalent vaccine are unlikely to be available in the foreseeable future. However, the continually increasing dengue incidence suggests that this strategy alone is not sufficient. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of accurately predicting disease outbreaks. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale
- β¦