806 research outputs found

    Identifying reliable traits across laboratory mouse exploration arenas: A meta-analysis

    Get PDF
    This study is a meta-analysis of 367 mice from a collection of behaviour neuroscience and behaviour genetic studies run in the same lab in Zurich, Switzerland. We employed correlation-based statistics to confirm and quantify consistencies in behaviour across the testing environments. All 367 mice ran exactly the same behavioural arenas: the light/dark box, the null maze, the open field arena, an emergence task and finally an object exploration task. We analysed consistency of three movement types across those arenas (resting, scanning, progressing), and their relative preference for three zones of the arenas (home, transition, exploration). Results were that 5/6 measures showed strong individual-differences consistency across the tests. Mean inter-arena correlations for these five measures ranged from +.12 to +.53. Unrotated principal component factor analysis (UPCFA) and Cronbach’s alpha measures showed these traits to be reliable and substantial (32-63% of variance across the five arenas). UPCFA loadings then indicate which tasks give the best information about these cross-task traits. One measure (that of time spent in “intermediate” zones) was not reliable across arenas. Conclusions centre on the use of individual differences research and behavioural batteries to revise understandings of what measures in one task predict for behaviour in others. Developing better behaviour measures also makes sound scientific and ethical sense

    Positional information readout in Ca2+Ca^{2+} signaling

    Full text link
    Living cells respond to spatial signals. Signal transmission to the cell interior often involves the release of second messengers like Ca2+Ca^{2+} . They will eventually trigger a physiological response by activating kinases that in turn activate target proteins through phosphorylation. Here, we investigate theoretically how positional information can be accurately read out by protein phosphorylation in spite of rapid second messenger diffusion. We find that accuracy is increased by binding of the kinases to the cell membrane prior to phosphorylation and by increasing the rate of Ca2+Ca^{2+} loss from the cell interior. These findings could explain some salient features of conventional protein kinases C

    Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation

    Get PDF
    Neural stem cells can generate in vitro progenitors of the three main cell lineages found in the CNS. The signaling pathways underlying the acquisition of differentiated phenotypes in these cells are poorly understood. Here we tested the hypothesis that Ca2+ signaling controls differentiation of neural precursors. We found low-frequency global and local Ca2+ transients occurring predominantly during early stages of differentiation. Spontaneous Ca2+ signals in individual precursors were not synchronized with Ca2+ transients in surrounding cells. Experimentally induced changes in the frequency of local Ca2+signals and global Ca2+ rises correlated positively with neurite outgrowth and the onset of GABAergic neurotransmitter phenotype, respectively. NMDA receptor activity was critical for alterations in neuronal morphology but not for the timing of the acquisition of the neurotransmitter phenotype. Thus, spontaneous Ca2+ signals are an intrinsic property of differentiating neurosphere-derived precursors. Their frequency may specify neuronal morphology and acquisition of neurotransmitter phenotype

    Adult Neurogenesis in Mammals: Variations and Confusions

    Full text link

    The entorhinal cortex of the Megachiroptera: a comparative study of Wahlberg's epauletted fruit bat and the straw-coloured fruit bat

    Get PDF
    This study describes the organisation of the entorhinal cortex of the Megachiroptera, straw-coloured fruit bat and Wahlberg's epauletted fruit bat. Using Nissl and Timm stains, parvalbumin and SMI-32 immunohistochemistry, we identified five fields within the medial (MEA) and lateral (LEA) entorhinal areas. MEA fields E CL and E C are characterised by a poor differentiation between layers II and III, a distinct layer IV and broad, stratified layers V and VI. LEA fields E I, E R and E L are distinguished by cell clusters in layer II, a clear differentiation between layers II and III, a wide columnar layer III and a broad sublayer Va. Clustering in LEA layer II was more typical of the straw-coloured fruit bat. Timm-staining was most intense in layers Ib and II across all fields and layer III of field E R. Parvalbumin-like staining varied along a medio-lateral gradient with highest immunoreactivity in layers II and III of MEA and more lateral fields of LEA. Sparse SMI-32-like immunoreactivity was seen only in Wahlberg's epauletted fruit bat. Of the neurons in MEA layer II, ovoid stellate cells account for ~38%, polygonal stellate cells for ~8%, pyramidal cells for ~18%, oblique pyramidal cells for ~6% and other neurons of variable morphology for ~29%. Differences between bats and other species in cellular make-up and cytoarchitecture of layer II may relate to their three-dimensional habitat. Cytoarchitecture of layer V in conjunction with high encephalisation and structural changes in the hippocampus suggest similarities in efferent hippocampal→entorhinal→cortical interactions between fruit bats and primate

    Block Crossings in Storyline Visualizations

    Full text link
    Storyline visualizations help visualize encounters of the characters in a story over time. Each character is represented by an x-monotone curve that goes from left to right. A meeting is represented by having the characters that participate in the meeting run close together for some time. In order to keep the visual complexity low, rather than just minimizing pairwise crossings of curves, we propose to count block crossings, that is, pairs of intersecting bundles of lines. Our main results are as follows. We show that minimizing the number of block crossings is NP-hard, and we develop, for meetings of bounded size, a constant-factor approximation. We also present two fixed-parameter algorithms and, for meetings of size 2, a greedy heuristic that we evaluate experimentally.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Heat and Charge Transport Properties of MgB2

    Full text link
    A polycrystalline sample of the MgB_2 superconductor was investigated by measurements of the electrical resistivity, the thermopower and the thermal conductivity in the temperature range between 1.8K and 300K in zero magnetic field. The electrical resistivity shows a superconducting transition at T_c=38.7K and, similarly to borocarbides, a T^2.4 behaviour up to 200K. The electron diffusion thermopower and its bandstructure-derived value indicate the dominant hole character of the charge carriers. The total thermopower can be explained by the diffusion term renormalized by a significant electron-phonon interaction and a phonon drag term. In the thermal conductivity, for decreasing temperature, a significant decrease below T_c is observed resulting in a T^3 behaviour below 7K. The reduced Lorenz number exhibits values smaller than 1 and a characteristic minimum which resembles the behaviour of non-magnetic borocarbides.Comment: 7 pages, 5 figures; added references and minor changes; accepted for publication in Physica
    corecore