806 research outputs found
Recommended from our members
The organisation and functions of local Ca<sup>2+</sup> signals
Calcium (Ca2+) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, such as gene transcription, muscle contraction and cell proliferation. The ability of a simple ion such as Ca2+ to play a pivotal role in cell biology results from the facility that cells have to shape Ca2+ signals in space, time and amplitude. To generate and interpret the variety of observed Ca2+ signals, different cell types employ components selected from a Ca2+ signalling 'toolkit', which comprises an array of homeostatic and sensory mechanisms. By mixing and matching components from the toolkit, cells can obtain Ca2+ signals that suit their physiology. Recent studies have demonstrated the importance of local Ca2+ signals in defining the specificity of the interaction of Ca2+ with its targets. Furthermore, local Ca2+ signals are the triggers and building blocks for larger global signals that propagate throughout cells
Identifying reliable traits across laboratory mouse exploration arenas: A meta-analysis
This study is a meta-analysis of 367 mice from a collection of behaviour neuroscience and behaviour genetic studies run in the same lab in Zurich, Switzerland. We employed correlation-based statistics to confirm and quantify consistencies in behaviour across the testing environments. All 367 mice ran exactly the same behavioural arenas: the light/dark box, the null maze, the open field arena, an emergence task and finally an object exploration task. We analysed consistency of three movement types across those arenas (resting, scanning, progressing), and their relative preference for three zones of the arenas (home, transition, exploration). Results were that 5/6 measures showed strong individual-differences consistency across the tests. Mean inter-arena correlations for these five measures ranged from +.12 to +.53. Unrotated principal component factor analysis (UPCFA) and Cronbach’s alpha measures showed these traits to be reliable and substantial (32-63% of variance across the five arenas). UPCFA loadings then indicate which tasks give the best information about these cross-task traits. One measure (that of time spent in “intermediate” zones) was not reliable across arenas. Conclusions centre on the use of individual differences research and behavioural batteries to revise understandings of what measures in one task predict for behaviour in others. Developing better behaviour measures also makes sound scientific and ethical sense
Positional information readout in signaling
Living cells respond to spatial signals. Signal transmission to the cell
interior often involves the release of second messengers like . They
will eventually trigger a physiological response by activating kinases that in
turn activate target proteins through phosphorylation. Here, we investigate
theoretically how positional information can be accurately read out by protein
phosphorylation in spite of rapid second messenger diffusion. We find that
accuracy is increased by binding of the kinases to the cell membrane prior to
phosphorylation and by increasing the rate of loss from the cell
interior. These findings could explain some salient features of conventional
protein kinases C
Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation
Neural stem cells can generate in vitro progenitors of the three main cell lineages found in the CNS. The signaling pathways underlying the acquisition of differentiated phenotypes in these cells are poorly understood. Here we tested the hypothesis that Ca2+ signaling controls differentiation of neural precursors. We found low-frequency global and local Ca2+ transients occurring predominantly during early stages of differentiation. Spontaneous Ca2+ signals in individual precursors were not synchronized with Ca2+ transients in surrounding cells. Experimentally induced changes in the frequency of local Ca2+signals and global Ca2+ rises correlated positively with neurite outgrowth and the onset of GABAergic neurotransmitter phenotype, respectively. NMDA receptor activity was critical for alterations in neuronal morphology but not for the timing of the acquisition of the neurotransmitter phenotype. Thus, spontaneous Ca2+ signals are an intrinsic property of differentiating neurosphere-derived precursors. Their frequency may specify neuronal morphology and acquisition of neurotransmitter phenotype
The entorhinal cortex of the Megachiroptera: a comparative study of Wahlberg's epauletted fruit bat and the straw-coloured fruit bat
This study describes the organisation of the entorhinal cortex of the Megachiroptera, straw-coloured fruit bat and Wahlberg's epauletted fruit bat. Using Nissl and Timm stains, parvalbumin and SMI-32 immunohistochemistry, we identified five fields within the medial (MEA) and lateral (LEA) entorhinal areas. MEA fields E CL and E C are characterised by a poor differentiation between layers II and III, a distinct layer IV and broad, stratified layers V and VI. LEA fields E I, E R and E L are distinguished by cell clusters in layer II, a clear differentiation between layers II and III, a wide columnar layer III and a broad sublayer Va. Clustering in LEA layer II was more typical of the straw-coloured fruit bat. Timm-staining was most intense in layers Ib and II across all fields and layer III of field E R. Parvalbumin-like staining varied along a medio-lateral gradient with highest immunoreactivity in layers II and III of MEA and more lateral fields of LEA. Sparse SMI-32-like immunoreactivity was seen only in Wahlberg's epauletted fruit bat. Of the neurons in MEA layer II, ovoid stellate cells account for ~38%, polygonal stellate cells for ~8%, pyramidal cells for ~18%, oblique pyramidal cells for ~6% and other neurons of variable morphology for ~29%. Differences between bats and other species in cellular make-up and cytoarchitecture of layer II may relate to their three-dimensional habitat. Cytoarchitecture of layer V in conjunction with high encephalisation and structural changes in the hippocampus suggest similarities in efferent hippocampal→entorhinal→cortical interactions between fruit bats and primate
Block Crossings in Storyline Visualizations
Storyline visualizations help visualize encounters of the characters in a
story over time. Each character is represented by an x-monotone curve that goes
from left to right. A meeting is represented by having the characters that
participate in the meeting run close together for some time. In order to keep
the visual complexity low, rather than just minimizing pairwise crossings of
curves, we propose to count block crossings, that is, pairs of intersecting
bundles of lines.
Our main results are as follows. We show that minimizing the number of block
crossings is NP-hard, and we develop, for meetings of bounded size, a
constant-factor approximation. We also present two fixed-parameter algorithms
and, for meetings of size 2, a greedy heuristic that we evaluate
experimentally.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Recommended from our members
Calcium puffs are generic InsP<sub>3</sub>-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses
Elementary Ca2+ signals, such as "Ca2+ puffs", which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca2+ signalling. We characterized Ca2+ puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads and kinetics of the events were similar in each of the cell types. The resemblance of Ca2+ puffs in these cell types suggests that they are a generic elementary Ca2+ signal and, furthermore, that the different inositol 1,4,5-trisphosphate isoforms are functionally redundant at the level of subcellular Ca2+ signalling. Hormonal stimulation of SH-SY5Y neuroblastoma cells and HeLa cells for several hours downregulated inositol 1,4,5-trisphosphate expression and concomitantly altered the properties of the Ca2+ puffs. The amplitude and duration of Ca2+ puffs were substantially reduced. In addition, the number of Ca2+ puff sites active during the onset of a Ca2+ wave declined. The consequence of the changes in Ca2+ puff properties was that cells displayed a lower propensity to trigger regenerative Ca2+ waves. Therefore, Ca2+ puffs underlie inositol 1,4,5-trisphosphate signalling in diverse cell types and are focal points for regulation of cellular responses
Heat and Charge Transport Properties of MgB2
A polycrystalline sample of the MgB_2 superconductor was investigated by
measurements of the electrical resistivity, the thermopower and the thermal
conductivity in the temperature range between 1.8K and 300K in zero magnetic
field. The electrical resistivity shows a superconducting transition at
T_c=38.7K and, similarly to borocarbides, a T^2.4 behaviour up to 200K. The
electron diffusion thermopower and its bandstructure-derived value indicate the
dominant hole character of the charge carriers. The total thermopower can be
explained by the diffusion term renormalized by a significant electron-phonon
interaction and a phonon drag term. In the thermal conductivity, for decreasing
temperature, a significant decrease below T_c is observed resulting in a T^3
behaviour below 7K. The reduced Lorenz number exhibits values smaller than 1
and a characteristic minimum which resembles the behaviour of non-magnetic
borocarbides.Comment: 7 pages, 5 figures; added references and minor changes; accepted for
publication in Physica
- …
