755 research outputs found

    Lateral diffusion of receptor-ligand bonds in membrane adhesion zones: Effect of thermal membrane roughness

    Full text link
    The adhesion of cells is mediated by membrane receptors that bind to complementary ligands in apposing cell membranes. It is generally assumed that the lateral diffusion of mobile receptor-ligand bonds in membrane-membrane adhesion zones is slower than the diffusion of unbound receptors and ligands. We find that this slowing down is not only caused by the larger size of the bound receptor-ligand complexes, but also by thermal fluctuations of the membrane shape. We model two adhering membranes as elastic sheets pinned together by receptor-ligand bonds and study the diffusion of the bonds using Monte Carlo simulations. In our model, the fluctuations reduce the bond diffusion constant in planar membranes by a factor close to 2 in the biologically relevant regime of small bond concentrations.Comment: 6 pages, 5 figures; to appear in Europhysics Letter

    Gravity-Induced Shape Transformations of Vesicles

    Full text link
    We theoretically study the behavior of vesicles filled with a liquid of higher density than the surrounding medium, a technique frequently used in experiments. In the presence of gravity, these vesicles sink to the bottom of the container, and eventually adhere even on non - attractive substrates. The strong size-dependence of the gravitational energy makes large parts of the phase diagram accessible to experiments even for small density differences. For relatively large volume, non-axisymmetric bound shapes are explicitly calculated and shown to be stable. Osmotic deflation of such a vesicle leads back to axisymmetric shapes, and, finally, to a collapsed state of the vesicle.Comment: 11 pages, RevTeX, 3 Postscript figures uuencode

    Molecular motor traffic in a half-open tube

    Full text link
    The traffic of molecular motors which interact through mutual exclusion is studied theoretically for half-open tube-like compartments. These half-open tubes mimic the shapes of axons. The mutual exclusion leads to traffic jams or density plateaus on the filaments. A phase transition is obtained when the motor velocity changes sign. We identify the relevant length scales and characterize the jamming behavior using both analytical approximations and Monte Carlo simulations of lattice models.Comment: 14 pages, 5 postscript figure

    Phase transitions in systems with two species of molecular motors

    Full text link
    Systems with two species of active molecular motors moving on (cytoskeletal) filaments into opposite directions are studied theoretically using driven lattice gas models. The motors can unbind from and rebind to the filaments. Two motors are more likely to bind on adjacent filament sites if they belong to the same species. These systems exhibit (i) Continuous phase transitions towards states with spontaneously broken symmetry, where one motor species is largely excluded from the filament, (ii) Hysteresis of the total current upon varying the relative concentrations of the two motor species, and (iii) Coexistence of traffic lanes with opposite directionality in multi-filament systems. These theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in Europhys. Lett. (http://www.edpsciences.org/epl

    From supported membranes to tethered vesicles: lipid bilayers destabilisation at the main transition

    Full text link
    We report results concerning the destabilisation of supported phospholipid bilayers in a well-defined geometry. When heating up supported phospholipid membranes deposited on highly hydrophilic glass slides from room temperature (i.e. with lipids in the gel phase), unbinding was observed around the main gel to fluid transition temperature of the lipids. It lead to the formation of relatively monodisperse vesicles, of which most remained tethered to the supported bilayer. We interpret these observations in terms of a sharp decrease of the bending rigidity modulus Îş\kappa in the transition region, combined with a weak initial adhesion energy. On the basis of scaling arguments, we show that our experimental findings are consistent with this hypothesis.Comment: 11 pages, 3 figure

    Collective dynamics in phospholipid bilayers investigated by inelastic neutron scattering: Exploring the dynamics of biological membranes with neutrons

    Full text link
    We present the first inelastic neutron scattering study of the short wavelength dynamics in a phospholipid bilayer. We show that inelastic neutron scattering using a triple-axis spectrometer at the high flux reactor of the ILL yields the necessary resolution and signal to determine the dynamics of model membranes. The results can quantitatively be compared to recent Molecular Dynamics simulations. Reflectivity, in-plane correlations and the corresponding dynamics can be measured simultaneously to gain a maximum amount of information. With this method, dispersion relations can be measured with a high energy resolution. Structure and dynamics in phospholipid bilayers, and the relation between them, can be studied on a molecular length scale

    Counterion density profiles at charged flexible membranes

    Full text link
    Counterion distributions at charged soft membranes are studied using perturbative analytical and simulation methods in both weak coupling (mean-field or Poisson-Boltzmann) and strong coupling limits. The softer the membrane, the more smeared out the counterion density profile becomes and counterions pentrate through the mean-membrane surface location, in agreement with anomalous scattering results. Membrane-charge repulsion leads to a short-scale roughening of the membrane.Comment: 4 pages, 4 figure

    The unbinding transition of mixed fluid membranes

    Full text link
    A phenomenological model for the unbinding transition of multi-component fluid membranes is proposed, where the unbinding transition is described using a theory analogous to Flory-Huggins theory for polymers. The coupling between the lateral phase separation of inclusion molecules and the membrane-substrate distance explains the phase coexistence between two unbound phases as observed in recent experiments by Marx et al. [Phys. Rev. Lett. 88, 138102 (2002)]. Bellow a critical end-point temperature, we find that the unbinding transition becomes first-order for multi-component membranes.Comment: 7 pages, 3 eps figure

    Solvent-free coarse-grained lipid model for large-scale simulations

    Full text link
    A coarse-grained molecular model, which consists of a spherical particle and an orientation vector, is proposed to simulate lipid membrane on a large length scale. The solvent is implicitly represented by an effective attractive interaction between particles. A bilayer structure is formed by orientation-dependent (tilt and bending) potentials. In this model, the membrane properties (bending rigidity, line tension of membrane edge, area compression modulus, lateral diffusion coefficient, and flip-flop rate) can be varied over broad ranges. The stability of the bilayer membrane is investigated via droplet-vesicle transition. The rupture of the bilayer and worm-like micelle formation can be induced by an increase in the spontaneous curvature of the monolayer membrane.Comment: 13 pages, 19 figure

    Traffic by multiple species of molecular motors

    Full text link
    We study the traffic of two types of molecular motors using the two-species symmetric simple exclusion process (ASEP) with periodic boundary conditions and with attachment and detachment of particles. We determine characteristic properties such as motor densities and currents by simulations and analytical calculations. For motors with different unbinding probabilities, mean field theory gives the correct bound density and total current of the motors, as shown by numerical simulations. For motors differing in their stepping probabilities, the particle-hole symmetry of the current-density relationship is broken and mean field theory fails drastically. The total motor current exhibits exponential finite-size scaling, which we use to extrapolate the total current to the thermodynamic limit. Finally, we also study the motion of a single motor in the background of many non-moving motors.Comment: 23 pages, 6 figures, late
    • …
    corecore