5 research outputs found

    Towards a health-aware fault tolerant control of complex systems: A vehicle fleet case

    No full text
    The paper deals with the problem of health-aware fault-tolerant control of a vehicle fleet. In particular, the development process starts with providing the description of the process along with a suitable Internet-of-Things platform, which enables appropriate communication within the vehicle fleet. It also indicates the transportation tasks to the designated drivers and makes it possible to measure their realization times. The second stage pertains to the description of the analytical model of the transportation system, which is obtained with the max-plus algebra. Since the vehicle fleet is composed of heavy duty machines, it is crucial to monitor and analyze the degradation of their selected mechanical components. In particular, the components considered are ball bearings, which are employed in almost every mechanical transportation system. Thus, a fuzzy logic Takagi–Sugeno approach capable of assessing their time-to-failure is proposed. This information is utilized in the last stage, which boils down to health-aware and fault-tolerant control of the vehicle fleet. In particular, it aims at balancing the exploitation of the vehicles in such a way as to maximize they average time-to-failure. Moreover, the fault-tolerance is attained by balancing the use of particular vehicles in such a way as to minimize the effect of possible transportation delays within the system. Finally, the effectiveness of the proposed approach is validated using selected simulation scenarios involving vehicle-based transportation tasks

    Analysis of γ′ Precipitates, Carbides and Nano-Borides in Heat-Treated Ni-Based Superalloy Using SEM, STEM-EDX, and HRSTEM

    No full text
    The microstructure of a René 108 Ni-based superalloy was systematically investigated by X-ray diffraction, light microscopy, energy-dispersive X-ray spectroscopy, and electron microscopy techniques. The material was investment cast in a vacuum and then solution treated (1200 °C-2h) and aged (900 °C-8h). The γ matrix is mainly strengthened by the ordered L12 γ′ phase, with the mean γ/γ′ misfit, δ, +0.6%. The typical dendritic microstructure with considerable microsegregation of the alloying elements is revealed. Dendritic regions consist of secondary and tertiary γ′ precipitates. At the interface of the matrix with secondary γ′ precipitates, nano M5B3 borides are present. In the interdendritic spaces additionally primary γ′ precipitates, MC and nano M23C6 carbides were detected. The γ′ precipitates are enriched in Al, Ta, Ti, and Hf, while channels of the matrix in Cr and Co. The highest summary concentration of γ′-formers occurs in coarse γ′ surrounding MC carbides. Borides M5B3 contain mostly W, Cr and Mo. All of MC carbides are enriched strongly in Hf and Ta, with the concentration relationship between these and other strong carbide formers depending on the precipitate’s morphology. The nano M23C6 carbides enriched in Cr have been formed as a consequence of phase transformation MC + γ → M23C6 + γ′ during the ageing treatment

    Characterization of γ′ Precipitates in Cast Ni-Based Superalloy and Their Behaviour at High-Homologous Temperatures Studied by TEM and in Situ XRD

    No full text
    In situ X-ray diffraction and transmission electron microscopy has been used to investigate René 108 Ni-based superalloy after short-term annealing at high-homologous temperatures. Current work is focused on characterisation of γ′ precipitates, their volume fraction, evolution of the lattice parameter of γ and γ′ phases and misfit parameter of γ′ in the matrix. Material in the initial condition is characterised by a high-volume fraction (over 63%) of γ′ precipitates. Irregular distribution of alloying elements was observed. Matrix channels were strongly enriched in Cr, Co, W and Mo, whereas precipitates contain large amount of Al, Ti, Ta and Hf. Exposure to high-homologous temperatures in the range 1100–1250 °C led to the dissolution of the precipitates, which influenced the change of lattice parameter of both γ and γ′ phases. The lattice parameter of the matrix continuously grew during holding at high temperatures, which had a dominant influence on the more negative misfit coefficient

    The role of the strengthening phases on the HAZ liquation cracking in a cast Ni-based superalloy used in industrial gas turbines

    No full text
    This work presents the influence of microstructural constituents on liquation crack formation in the cast Ni-based superalloy, René 108. The investigation was divided into three parts: characterisation of the material's microstructure in pre-weld condition, hot ductility studies and analysis of liquation cracking induced by the gas tungsten arc welding process. Using advanced electron microscopy techniques it is shown that the base material in pre-weld condition is characterised by a complex microstructure. The phases identified in René 108 include γ matrix, γ' precipitates, MC and M23C6 carbides, and M5B3 borides. Based on Gleeble testing, it was found that René 108 is characterised by high strength at elevated temperatures with a maximum of 1107 MPa at 975 °C. As a result of constitutional liquation, the superalloy’s strength and ductility were significantly reduced. The nil strength temperature was equal to 1292 °C, while the nil ductility temperature was 1225 °C. The low ductility recovery rate (32.1), ratio of ductility recovery (36.2) and hot cracking factor (Rf = 0.05) values confirmed the low weldability of Renѐ 108. In the heat-affected zone (HAZ) induced by welding, constitutional liquation of mainly γ' precipitates, with a contribution of M23C6 carbides and M5B3 borides, was observed. The thin non-equilibrium liquid film, which formed along high-angle grain boundaries, led to crack initiation and their further propagation during cooling. The eutectic γ–γ' re-solidification products are visible on the crack edges.Acknowledgements This work was supported by the Polish National Science Centre (Preludium 13) under grant 2017/25/N/ST8/02368. The authors acknowledge the contribution of DAAD (Research Grants-Short-Term Grants 2021) in supporting the collaboration between AGH-UST and the Technical University of Munich. Also, Łukasz Rakoczy has been partly supported by the Foundation for Polish Science (FNP) with scholarship START 2022 (no. START 066.2022). MGR thanks to the National Center for Research and Development for the support in project LIDER 0147/L-13/2022.CC BY-4.0</p

    2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes

    No full text
    corecore