8 research outputs found

    Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals

    Get PDF
    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 X (2) X 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing

    Near-infrared spectroscopic imaging of stimulus-related hemodynamic responses on the neonatal auditory cortices.

    No full text
    We have used near-infrared spectroscopy (NIRS) to study hemodynamic auditory evoked responses on 7 full-term neonates. Measurements were done simultaneously above both auditory cortices to study the distribution of speech and music processing between hemispheres using a 16-channel frequency-domain instrument. The stimulation consisted of 5-second samples of music and speech with a 25-second silent interval. In response to stimulation, a significant increase in the concentration of oxygenated hemoglobin ([HbO2]) was detected in 6 out of 7 subjects. The strongest responses in [HbO2] were seen near the measurement location above the ear on both hemispheres. The mean latency of the maximum responses was 9.42±1.51 s. On the left hemisphere (LH), the maximum amplitude of the average [HbO2] response to the music stimuli was 0.76± 0.38 μ M (mean±std.) and to the speech stimuli 1.00± 0.45 μ± μM. On the right hemisphere (RH), the maximum amplitude of the average [HbO2] response was 1.29± 0.85 μM to the music stimuli and 1.23± 0.93 μM to the speech stimuli. The results indicate that auditory information is processed on both auditory cortices, but LH is more concentrated to process speech than music information. No significant differences in the locations and the latencies of the maximum responses relative to the stimulus type were found

    Cytokines and growth factors

    No full text
    Several cytokines have been used to treat autoimmune diseases, viral infections, and cancer and to regenerate the skin. In particular, interferons (INFs) have been used to treat cancer, hepatitis B and C, and multiple sclerosis, while interleukins (ILs) and tumor necrosis factors (TNFs) have been used in the management of different types of cancer. Concerning the hematopoietic growth factors (HGFs), epoetin has been used for anemia, whereas the colony-stimulating factors (CSFs) have been used for neutropenia. Other growth factors have been extensively explored, although most still need to demonstrate in vivo clinical relevance before reaching the market.This chapter provides an overview on the therapeutic applications of biological medicines containing recombinant cytokines and growth factors (HGFs and others). From this review, we concluded that the clinical relevance of recombinant cytokines has been increasing. Since the 1980s, the European Medicines Agency (EMA) and/or Food and Drug Administration (FDA) have approved 89 biological medicines containing recombinant cytokines. Among these, 18 were withdrawn, 24 are biosimilars, and 18 are orphans.So far, considerable progress has been made in discovering new cytokines, additional cytokine functions, and how they interfere with human diseases. Future prospects include the approval of more biological and biosimilar medicines for different therapeutic applications.info:eu-repo/semantics/publishedVersio
    corecore