2,113 research outputs found

    Remote sensing of tropical tropopause layer radiation balance using A-train measurements

    Get PDF
    Determining the level of zero net radiative heating (LZH) is critical to understanding parcel trajectory in the Tropical Tropopause Layer (TTL) and associated stratospheric hydration processes. Previous studies of the TTL radiative balance have focused on using radiosonde data, but remote sensing measurements from polar-orbiting satellites may provide the relevant horizontal and vertical information for assessing TTL solar heating and infrared cooling rates, especially across the Pacific Ocean. CloudSat provides a considerable amount of vertical information about the distribution of cloud properties relevant to heating rate analysis. The ability of CloudSat measurements and ancillary information to constrain LZH is explored. We employ formal error propagation analysis for derived heating rate uncertainty given the CloudSat cloud property retrieval algorithms. Estimation of the LZH to within approximately 0.5 to 1 km is achievable with CloudSat, but it has a low-altitude bias because the radar is unable to detect thin cirrus. This can be remedied with the proper utilization of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar backscatter information. By utilizing an orbital simulation with the GISS data set, we explore the representativeness of non-cross-track scanning active sounders in terms of describing the LZH distribution. In order to supplement CloudSat, we explore the ability of Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to constrain LZH and find that these passive sounders are useful where the cloud top height does not exceed 7 km. The spatiotemporal distributions of LZH derived from CloudSat and CALIPSO measurements are presented which suggest that thin cirrus have a limited effect on LZH mean values but affect LZH variability

    The effects of small ice crystals on the infrared radiative properties of cirrus clouds

    Get PDF
    To be successful in the development of satellite retrieval methodologies for the determination of cirrus cloud properties, we must have fundamental scattering and absorption data on nonspherical ice crystals that are found in cirrus clouds. Recent aircraft observations (Platt et al. 1989) reveal that there is a large amount of small ice particles, on the order of 10 micron, in cirrus clouds. Thus it is important to explore the potential differences in the scattering and absorption properties of ice crystals with respect to their sizes and shapes. In this study the effects of nonspherical small ice crystals on the infrared radiative properties of cirrus clouds are investigated using light scattering properties of spheroidal particles. In Section 2, using the anomalous diffraction theory for spheres and results from the exact spheroid scattering program, efficient parameterization equations are developed for calculations of the scattering and absorption properties for small ice crystals. Parameterization formulas are also developed for large ice crystals using results computed from the geometric ray-tracing technique and the Fraunhofer diffraction theory for spheroids and hexagonal crystals. This is presented in Section 3. Finally, applications to the satellite remote sensing are described in Section 4

    Characteristics of cloud-to-ground lightning activity over Seoul, South Korea in relation to an urban effect

    Get PDF
    Cloud-to-ground (CG) lightning flash data collected by the lightning detection network installed at the Korean Meteorological Administration (KMA) have been used to study the urban effect on lightning activity over and around Seoul, the largest metropolitan city of South Korea, for the period of 1989–1999. Negative and positive flash density and the percentage of positive flashes have been calculated. Calculation reveals that an enhancement of approximately 60% and 42% are observed, respectively, for negative and positive flash density over and downwind of the city. The percentage decrease of positive flashes occurs over and downwind of Seoul and the amount of decrease is nearly 20% compared to upwind values. The results are in good agreement with those obtained by Steiger et al. (2002) and Westcott (1995). CG lightning activities have also been considered in relation to annual averages of PM<sub>10</sub> (particulate matter with an aerodynamic diameter smaller than 10 μm) and sulphur dioxide (SO<sub>2</sub>) concentrations. Interesting results are found, indicating that the higher concentration of SO<sub>2</sub> contributes to the enhancement of CG lightning flashes. On the other hand, the contribution from PM<sub>10</sub> concentration has not appeared in this study to be as significant as SO<sub>2</sub> in the enhancement of CG lightning flashes. Correlation coefficients of 0.33 and 0.64 are found between the change in CG lightning flashes and the PM<sub>10</sub> and SO<sub>2</sub>, respectively, for upwind to downwind areas, suggesting a significant influence of the increased concentration of SO<sub>2</sub> on the enhancement of CG flashes
    corecore