23 research outputs found

    Children with idiopathic short stature have significantly different gut microbiota than their normal height siblings: a case-control study

    Get PDF
    ObjectivesTo investigate the role of gut microbiota (GM) in pathogenesis of idiopathic short stature (ISS) by comparing GM of ISS children to their normal-height siblings.MethodsThis case-control study, conducted at the Schneider Children’s Medical Center’s Institute for Endocrinology and Diabetes between 4/2018-11/2020, involved 30 pairs of healthy pre-pubertal siblings aged 3-10 years, each comprising one sibling with ISS and one with normal height. Outcome measures from fecal analysis of both siblings included GM composition analyzed by 16S rRNA sequencing, fecal metabolomics, and monitoring the growth of germ-free (GF) mice after fecal transplantation.ResultsFecal analysis of ISS children identified higher predicted levels of genes encoding enzymes for pyrimidine, purine, flavin, coenzyme B, and thiamine biosynthesis, lower levels of several amino acids, and a significantly higher prevalence of the phylum Euryarchaeota compared to their normal-height siblings (p<0.001). ISS children with higher levels of Methanobrevibacter, the dominant species in the archaeal gut community, were significantly shorter in stature than those with lower levels (p=0.022). Mice receiving fecal transplants from ISS children did not experience stunted growth, probably due to the eradication of Methanobrevibacter caused by exposure to oxygen during fecal collection.DiscussionOur findings suggest that different characteristics in the GM may explain variations in linear growth. The varying levels of Methanobrevibacter demonstrated within the ISS group reflect the multifactorial nature of ISS and the potential ability of the GM to partially explain growth variations. The targeting of specific microbiota could provide personalized therapies to improve growth in children with ISS

    Increase Human Metapneumovirus Mediated Morbidity following Pandemic Influenza Infection

    Get PDF
    Human metapneumovirus (hMPV) is a recently discovered respiratory pathogen, infecting mainly young children. The infected patients suffer from influenza like symptoms (ILS). In Israel the virus is mainly circulating in February to March. Here we report on an increased rate of hMPV infection in the winter season of 2009–10. The 2009–10 infection had several unique characteristics when compared to previous seasons; it started around January and a large number of infants were infected by the virus. Genetic analysis based on the viral L and F genes of hMPV showed that only subtypes A2 and B2 circulated in Israel. Additionally, we have identified a novel variant of hMPV within subgroup A2b, which subdivide it into A2b1 and A2b2. Finally, we showed that the hMPV infection was detected in the country soon after the infection with the pandemic influenza virus had declined, that infection with the pandemic influenza virus was dominant and that it interfered with the infection of other respiratory viruses. Thus, we suggest that the unusual increase in hMPV infection observed in 2009–10 was due to the appearance of the pandemic influenza virus in the winter season prior to 2009–10

    The Natural History of Metabolic Comorbidities in Turner Syndrome from Childhood to Early Adulthood: Comparison between 45,X Monosomy and Other Karyotypes

    No full text
    ObjectivePatients with Turner syndrome (TS) are at increased risk for metabolic disorders. We aimed to delineate the occurrence and evolution of metabolic comorbidities in TS patients and to determine whether these differ in 45,X monosomy and other karyotypes.MethodsA longitudinal and cross-sectional retrospective cohort study was conducted in a tertiary pediatric endocrine unit during 1980–2016. Ninety-eight TS patients, 30 with 45,X monosomy were followed from childhood to early adulthood. Outcome measures included weight status, blood pressure (BP), glucose metabolism, and lipid profile.ResultsLongitudinal analysis showed a significant change in body mass index (BMI) percentiles over time [F(3,115) = 4.8, P = 0.003]. Age was associated with evolution of elevated BP [systolic BP: odds ratio (OR) = 0.91, P = 0.003; diastolic BP: OR = 0.93, P = 0.023], impaired glucose metabolism (HbA1c: OR = 1.08, P = 0.029; impaired glucose tolerance: OR = 1.12, P = 0.029), and abnormal lipid profile (cholesterol: OR = 1.06, P = 0.01; low-density lipoprotein cholesterol: OR = 1.07, P = 0.041; high-density lipoprotein cholesterol: OR = 1.07, P = 0.033). The occurrence of metabolic comorbidities was similar in 45,X monosomy and other karyotypes. Coexistence of multiple metabolic comorbidities was significantly higher in 45,X monosomy [F(1,72) = 4.81, P = 0.032]. BMI percentiles were positively correlated with metabolic comorbidities (occurrence and number) in each patient (r = 0.35, P = 0.002 and r = 0.383, P = 0.001, respectively).ConclusionOur longitudinal study provides unique insights into the evolution of weight gain and metabolic disorders from childhood to early adulthood in TS patients. Since overweight and increasing age aggravate the risk for metabolic comorbidities, careful surveillance is warranted to prevent and control obesity already from childhood. The more prominent clustering of metabolic comorbidities in 45,X monosomy underscores the importance of a more vigorous intervention in this group

    Growth hormone therapy in children with idiopathic short stature – the effect on appetite and appetite-regulating hormones: a pilot study

    No full text
    <p><b>Aim</b>: To investigate the effect of growth hormone (GH) therapy on appetite-regulating hormones and to examine the association between these hormones and the response to GH, body composition, and resting energy expenditure (REE).</p> <p><b>Methods</b>: Nine pre-pubertal children with idiopathic short stature underwent a standard meal test before and 4 months following initiation of GH treatment. Ghrelin, GLP-1, leptin, and insulin levels were measured; area under the curve (AUC) was calculated. Height, weight, body composition, REE, and insulin-like growth factor levels were recorded at baseline and after 4 and 12 months.</p> <p><b>Results</b>: Following 4 months of GH therapy, food intake increased, with increased height-standard deviation score (SDS), weight-SDS, and REE (<i>p </i>< .05). Significant changes in appetite-regulating hormones included a decrease in postprandial AUC ghrelin levels (<i>p </i>= .045) and fasting GLP-1 (<i>p </i>= .038), and an increase in fasting insulin (<i>p </i>= .043). Ghrelin levels before GH treatment were positively correlated with the changes in weight-SDS (fasting: <i>r</i> = .667, <i>p </i>= .05; AUC: <i>r</i> = .788, <i>p </i>= .012) and REE (fasting: <i>r</i> = .866, <i>p </i>= .005; AUC: <i>r</i> = .847, <i>p </i>= .008) following 4 months of GH therapy. Ghrelin AUC at 4 months was positively correlated with the changes in height-SDS (<i>r</i> = .741, <i>p </i>= .022) and fat-free-mass (<i>r</i> = .890, <i>p </i>= .001) at 12 months of GH treatment.</p> <p><b>Conclusions</b>: The reduction in ghrelin and GLP-1 following GH treatment suggests a role for GH in appetite regulation. Fasting and meal-AUC ghrelin levels may serve as biomarkers for predicting short-term (4 months) changes in weight and longer term (12 months) changes in height following GH treatment. The mechanisms linking GH with changes in appetite-regulating hormones remain to be elucidated.</p> <p><b>Abbreviations:</b> SDS: standard deviation score; REE: resting energy expenditure; SMT: standard meal test; AUC: area under the curve; ISS: idiopathic short stature; SGA: small for gestational age; FFM: fat-free-mass; FM: fat mass; EER: estimated energy requirements; DRI: dietary reference intakes; IQR: inter-quartile range</p

    DataSheet_1_Children with idiopathic short stature have significantly different gut microbiota than their normal height siblings: a case-control study.docx

    No full text
    ObjectivesTo investigate the role of gut microbiota (GM) in pathogenesis of idiopathic short stature (ISS) by comparing GM of ISS children to their normal-height siblings.MethodsThis case-control study, conducted at the Schneider Children’s Medical Center’s Institute for Endocrinology and Diabetes between 4/2018-11/2020, involved 30 pairs of healthy pre-pubertal siblings aged 3-10 years, each comprising one sibling with ISS and one with normal height. Outcome measures from fecal analysis of both siblings included GM composition analyzed by 16S rRNA sequencing, fecal metabolomics, and monitoring the growth of germ-free (GF) mice after fecal transplantation.ResultsFecal analysis of ISS children identified higher predicted levels of genes encoding enzymes for pyrimidine, purine, flavin, coenzyme B, and thiamine biosynthesis, lower levels of several amino acids, and a significantly higher prevalence of the phylum Euryarchaeota compared to their normal-height siblings (pDiscussionOur findings suggest that different characteristics in the GM may explain variations in linear growth. The varying levels of Methanobrevibacter demonstrated within the ISS group reflect the multifactorial nature of ISS and the potential ability of the GM to partially explain growth variations. The targeting of specific microbiota could provide personalized therapies to improve growth in children with ISS.</p

    Table_1_Children with idiopathic short stature have significantly different gut microbiota than their normal height siblings: a case-control study.docx

    No full text
    ObjectivesTo investigate the role of gut microbiota (GM) in pathogenesis of idiopathic short stature (ISS) by comparing GM of ISS children to their normal-height siblings.MethodsThis case-control study, conducted at the Schneider Children’s Medical Center’s Institute for Endocrinology and Diabetes between 4/2018-11/2020, involved 30 pairs of healthy pre-pubertal siblings aged 3-10 years, each comprising one sibling with ISS and one with normal height. Outcome measures from fecal analysis of both siblings included GM composition analyzed by 16S rRNA sequencing, fecal metabolomics, and monitoring the growth of germ-free (GF) mice after fecal transplantation.ResultsFecal analysis of ISS children identified higher predicted levels of genes encoding enzymes for pyrimidine, purine, flavin, coenzyme B, and thiamine biosynthesis, lower levels of several amino acids, and a significantly higher prevalence of the phylum Euryarchaeota compared to their normal-height siblings (pDiscussionOur findings suggest that different characteristics in the GM may explain variations in linear growth. The varying levels of Methanobrevibacter demonstrated within the ISS group reflect the multifactorial nature of ISS and the potential ability of the GM to partially explain growth variations. The targeting of specific microbiota could provide personalized therapies to improve growth in children with ISS.</p
    corecore