452 research outputs found
A Model for the Sources of the Slow Solar Wind
Models for the origin of the slow solar wind must account for two seemingly
contradictory observations: The slow wind has the composition of the closed
field corona, implying that it originates from the continuous opening and
closing of flux at the boundary between open and closed field. On the other
hand, the slow wind also has large angular width, up to ~ 60{\circ}, suggesting
that its source extends far from the open-closed boundary. We propose a model
that can explain both observations. The key idea is that the source of the slow
wind at the Sun is a network of narrow (possibly singular) open-field corridors
that map to a web of separatrices and quasi-separatrix layers in the
heliosphere. We compute analytically the topology of an open-field corridor and
show that it produces a quasi-separatrix layer in the heliosphere that extends
to angles far from the heliospheric current sheet. We then use an MHD code and
MDI/SOHO observations of the photospheric magnetic field to calculate
numerically, with high spatial resolution, the quasi-steady solar wind and
magnetic field for a time period preceding the August 1, 2008 total solar
eclipse. Our numerical results imply that, at least for this time period, a web
of separatrices (which we term an S-web) forms with sufficient density and
extent in the heliosphere to account for the observed properties of the slow
wind. We discuss the implications of our S-web model for the structure and
dynamics of the corona and heliosphere, and propose further tests of the model
High resolution climate projection of storm surge at the Venetian coast
Abstract. Climate change impact on storm surge regime is of great importance for the safety and maintenance of Venice. In this study a future storm surge scenario is evaluated using new high resolution sea level pressure and wind data recently produced by EC-Earth, an Earth System Model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). The study considers an ensemble of six 5 yr long simulations of the rcp45 scenario at 0.25° resolution and compares the 2094–2098 to the 2004–2008 period. EC-Earth sea level pressure and surface wind fields are used as input for a shallow water hydrodynamic model (HYPSE) which computes sea level and barotropic currents in the Adriatic Sea. Results show that a high resolution climate model is needed for producing realistic values of storm surge statistics and confirm previous studies in that they show little sensitivity of storm surge levels to climate change. However, some climate change signals are detected, such as increased persistence of high pressure conditions, an increased frequency of windless hour, and a decreased number of moderate windstorms
Preface: Understanding dynamics and current developments of climate extremes in the Mediterranean region
There is an increasing interest of scientists on climate extremes. A progressively larger number of papers dealing with climate issues have been produced in the past 15 yr, and those dealing with extremes have increased at an even faster pace. The number of papers on extremes in the Mediterranean follows this overall trend and confirms how extremes are perceived to be important by the scientific community and by society. This special issue (which is mainly related to activities of the MedCLIVAR (Mediterranean CLImate VARiability and Predictability) and CIRCE (Climate Change and Impact Research: the Mediterranean Environment) projects), contains thirteen papers that are representative of current research on extremes in the Mediterranean region. Five have precipitation as its main target, four temperature (one paper addresses both variables), and two droughts; the remaining papers consider sea level, winds and impacts on society. Results are quite clear concerning climate evolution toward progressively hotter temperature extremes, but more controversial for precipitation, though in the published literature there are indications for a future increasing intensity of hydrological extremes (intense precipitation events and droughts). Scenario simulations suggest an attenuation of extreme storms, winds, waves and surges, but more results are requested for confirming this future change
Simulated Time Lags of Hinode/XRT and SDO/AIA Lightcurves as an Indication of Loop Heating Scenario
The precise nature of the heating mechanism in coronal loops is still a matter of enormous research. We present the results from a 1D hydrodynamic loop simulation of a coronal loop which was run using different parameters such as loops length (50, 200 and 500 Mm), maximum temperature reached (3MK and 10 MK0, and abundances. For each scenario the model outputs were used to calculate the corresponding lightcurves as seen by XRT/Be-thin and various EUV AIA channels. The lag time between the peak of these lightcurves was computed and tested using cross-correlation and plotted as a function of loop length
Brief communication: Towards a universal formula for the probability of tornadoes
A methodological approach is proposed to provide an analytical (exponential-like) expression for the probability of occurrence of tornadoes as a function of the convective available potential energy and the wind shear (or, alternatively, the storm relative helicity). The resulting expression allows the probability of tornado occurrence to be calculated using variables that are computed by weather prediction and climate models, thus compensating for the lack of resolution needed to resolve these phenomena in numerical simulations
May 12 1997 Cme Event: I. a Simplified Model of the Pre-Eruptive Magnetic Structure
A simple model of the coronal magnetic field prior to the CME eruption on May
12 1997 is developed. First, the magnetic field is constructed by superimposing
a large-scale background field and a localized bipolar field to model the
active region (AR) in the current-free approximation. Second, this potential
configuration is quasi-statically sheared by photospheric vortex motions
applied to two flux concentrations of the AR. Third, the resulting force-free
field is then evolved by canceling the photospheric magnetic flux with the help
of an appropriate tangential electric field applied to the central part of the
AR.
To understand the structure of the modeled configuration, we use the field
line mapping technique by generalizing it to spherical geometry. It is
demonstrated that the initial potential configuration contains a hyperbolic
flux tube (HFT) which is a union of two intersecting quasi-separatrix layers.
This HFT provides a partition of the closed magnetic flux between the AR and
the global solar magnetic field. The vortex motions applied to the AR interlock
the field lines in the coronal volume to form additionally two new HFTs pinched
into thin current layers. Reconnection in these current layers helps to
redistribute the magnetic flux and current within the AR in the
flux-cancellation phase. In this phase, a magnetic flux rope is formed together
with a bald patch separatrix surface wrapping around the rope. Other important
implications of the identified structural features of the modeled configuration
are also discussed.Comment: 25 pages, 11 figures, to appear in ApJ 200
- …