36 research outputs found

    Supramolecular Semiconductivity through Emerging Ionic Gates in Ion–Nanoparticle Superlattices

    Get PDF
    The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals via mediation by citrate counterions. In silico ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/nonconductive behavior is reminiscent of that of conventional semiconductors, while, at a supramolecular level, crossing the "band gap " requires a sufficient electrostatic stimulus to break the intermolecular interactions and make ions diffuse throughout the superlattice's cavities

    Unsupervised Data-Driven Reconstruction of Molecular Motifs in Simple to Complex Dynamic Micelles

    Get PDF
    The reshuffling mobility of molecular building blocks in self-assembled micelles is a key determinant of many their interesting properties, from emerging morphologies and surface compartmentalization, to dynamic reconfigurability and stimuli-responsiveness. However, the microscopic details of such complex structural dynamics are typically nontrivial to elucidate, especially in multicomponent assemblies. Here we show a machine-learning approach that allows us to reconstruct the structural and dynamic complexity of mono- and bicomponent surfactant micelles from high-dimensional data extracted from equilibrium molecular dynamics simulations. Unsupervised clustering of smooth overlap of atomic position (SOAP) data enables us to identify, in a set of multicomponent surfactant micelles, the dominant local molecular environments that emerge within them and to retrace their dynamics, in terms of exchange probabilities and transition pathways of the constituent building blocks. Tested on a variety of micelles differing in size and in the chemical nature of the constitutive self-assembling units, this approach effectively recognizes the molecular motifs populating them in an exquisitely agnostic and unsupervised way, and allows correlating them to their composition in terms of constitutive surfactant species

    Are postnatal traumatic events an underestimated cause of porencephalic lesions in dogs and cats?

    Get PDF
    IntroductionPorencephaly is defined as a fluid-filled cavity of variable size in the brain cortex. It is regarded as a congenital condition and is typically considered a developmental or an encephaloclastic defect. Our hypothesis is that postnatal traumatic events in the first few months of life may represent a cause of canine and feline porencephaly that is more common than generally suspected. The aims of this study were to retrospectively investigate porencephaly in a large population of dogs and cats, detect MRI features that might be useful to differentiate postnatal acquired traumatic forms from congenital/perinatal porencephaly, and define the prevalence of seizure activity in porencephalic patients.Materials and methodsThis is a double-center, descriptive, retrospective case series. Databases were searched for cases within a 17-year time span that involve dogs and cats with an MRI-based diagnosis of cerebral cavitary lesions. Animals were included if a complete signalment and an exhaustive MRI of the brain were available. Besides the porencephalic lesions, MRIs of the head were reviewed to detect concomitant musculoskeletal abnormalities.ResultsThirty-two cases involving nine cats and twenty-three dogs were selected. Of all the cases, 21.9% were aged six years or older at the time of diagnosis. All patients in which the neuroanatomical localization was available showed clinical signs of a prosencephalic disorder. Epileptic seizures were observed in 71.8% of cases. A single porencephalic cavity was found in 78.1% of cases. The most affected cerebral lobe was the parietal lobe (n = 20). The defects involved both the grey and white matter in 78.1% of cases. Twenty cases showed concomitant musculoskeletal abnormalities overlying the porencephalic cavities. Fourteen of twenty cases showed evidence of fractures, of which thirteen showed depression of the calvarium and twelve masticatory muscle abnormalities. Of these, seven of fourteen had a history consistent with a head trauma in the first period of life.ConclusionThe recognition of skull fractures and muscular abnormalities closely associated with the porencephalic cavity may support a diagnosis of a postnatal traumatic origin of porencephaly. Therefore, this study highlights the importance of evaluating musculoskeletal structures in the MRIs of the heads of porencephalic cases

    Molecular Modeling of Supramolecular Systems with Controllable Stimuli-Responsive Properties

    No full text
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Supramolecular Semiconductivity through Emerging Ionic Gates in Ion-Nanoparticle Superlattices

    No full text
    The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals via mediation of citrate counterions. In silico ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/non-conductive behavior is reminiscent of that of conventional semiconductors; however, at a supramolecular level, crossing the “band-gap” requires a sufficient electrostatic stimulus to break the electrostatic interactions and make ions diffuse throughout the superlattice’s cavities
    corecore