404 research outputs found

    Scale invariant jets: from blazars to microquasars

    Get PDF
    Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many cases observations support such hypotheses for microquasars and Seyfert galaxies, little is known on whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multiwavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broad-band radio luminosity and black hole mass, which extends over ∼\sim 9 orders of magnitude down to microquasars scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor, and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens-of-solar mass black holes, immediately applicable to cases as those recently observed by LIGO.Comment: 13 pages, 4 figures, accepted for publication in AP

    Search for AGN counterparts of unidentified Fermi-LAT sources with optical polarimetry: Demonstration of the technique

    Get PDF
    The third Fermi-LAT catalog (3FGL) presented the data of the first four years of observations from the Fermi Gamma-ray Space Telescope mission. There are 3034 sources, 1010 of which still remain unidentified. Identifying and classifying gamma-ray emitters is of high significance with regard to studying high-energy astrophysics. We demonstrate that optical polarimetry can be an advantageous and practical tool in the hunt for counterparts of the unidentified gamma-ray sources (UGSs). Using data from the RoboPol project, we validated that a significant fraction of active galactic nuclei (AGN) associated with 3FGL sources can be identified due to their high optical polarization exceeding that of the field stars. We performed an optical polarimetric survey within 3σ3\sigma uncertainties of four unidentified 3FGL sources. We discovered a previously unknown extragalactic object within the positional uncertainty of 3FGL J0221.2+2518. We obtained its spectrum and measured a redshift of z=0.0609±0.0004z=0.0609\pm0.0004. Using these measurements and archival data we demonstrate that this source is a candidate counterpart for 3FGL J0221.2+2518 and most probably is a composite object: a star-forming galaxy accompanied by AGN. We conclude that polarimetry can be a powerful asset in the search for AGN candidate counterparts for unidentified Fermi sources. Future extensive polarimetric surveys at high galactic latitudes (e.g., PASIPHAE) will allow the association of a significant fraction of currently unidentified gamma-ray sources.Comment: accepted to A&

    RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars

    Get PDF
    We use results of our 3 year polarimetric monitoring program to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by {\em RoboPol} is analysed together with the gamma-ray data provided by {\em Fermi}-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time scales of rotations and flares are marginally correlated.Comment: 12 pages, 16 figures, accepted to MNRA

    The hunt for extraterrestrial high-energy neutrino counterparts

    Full text link
    The origin of Petaelectronvolt (PeV) astrophysical neutrinos is fundamental to our understanding of the high-energy Universe. Apart from the technical challenges of operating detectors deep below ice, oceans, and lakes, the phenomenological challenges are even greater than those of gravitational waves; the sources are unknown, hard to predict, and we lack clear signatures. Neutrino astronomy therefore represents the greatest challenge faced by the astronomy and physics communities thus far. The possible neutrino sources range from accretion disks and tidal disruption events, to relativistic jets and galaxy clusters with blazar TXS~0506+056 the most compelling association thus far. Since that association, immense effort has been put into proving or disproving that jets are indeed neutrino emitters, but to no avail. By generating simulated neutrino counterpart samples, we explore the potential of detecting a significant correlation of neutrinos with jets from active galactic nuclei. We find that, given the existing challenges, even our best experiments could not have produced a >3σ>3\sigma result. Larger programs over the next few years will be able to detect a significant correlation only if the brightest radio sources, rather than all jetted active galactic nuclei, are neutrino emitters. We discuss the necessary strategies required to steer future efforts into successful experiments.Comment: 8 pages, 1 figure, 1 table, accepted for publication in A&

    Compact Symmetric Objects -- I Towards a Comprehensive Bona Fide Catalog

    Full text link
    Compact Symmetric Objects (CSOs) are jetted Active Galactic Nuclei (AGN) with overall projected size <1 kpc. The classification was introduced to distinguish these objects from the majority of compact jetted-AGN in centimeter wavelength very long baseline interferometry observations, where the observed emission is relativistically boosted towards the observer. The original classification criteria for CSOs were: (i) evidence of emission on both sides of the center of activity, and (ii) overall size <1 kpc. However some relativistically boosted objects with jet axes close to the line of sight appear symmetric and have been mis-classified as CSOs, thereby undermining the CSO classification. This is because two essential CSO properties, pointed out in the original papers, have been neglected: (iii) low variability, and (iv) low apparent speeds along the jets. As a first step towards creating a comprehensive catalog of ``bona fide'' CSOs, we identify 79 bona fide CSOs, including 15 objects claimed as confirmed CSOs here for the first time, that match the CSO selection criteria. This sample of bona fide CSOs can be used for astrophysical studies of CSOs without contamination by mis-classified CSOs. We show that the fraction of CSOs in complete flux density limited AGN samples with S5 GHz_{\rm 5\,GHz} >700 mJy is between (6.8±1.6)(6.8\pm1.6)% and (8.5±1.8)(8.5\pm1.8)%.Comment: 28 pages, 9 figures, 3 tables, accepted for publicatio

    Compact Symmetric Objects -- II Confirmation of a Distinct Population of High-Luminosity Jetted Active Galaxies

    Full text link
    Compact Symmetric Objects (CSOs) are compact (<1 kpc), jetted Active Galactic Nuclei (AGN), whose jet axes are not aligned close to the line of sight, and whose observed emission is not predominantly relativistically boosted towards us. Two classes of CSOs have previously been identified: approximately one fifth are edge-dimmed and designated as CSO 1s, while the rest are edge brightened and designated as CSO 2s. This paper focuses almost exclusively on CSO 2s. Using complete samples of CSO 2s we present three independent lines of evidence, based on their relative numbers, redshift distributions, and size distributions, which show conclusively that the vast majority (> 99%) of CSO 2s do not evolve into larger-scale radio sources. These CSO 2s belong to a distinct population of jetted-AGN, which should be characterized as ``short-lived'' compared to the classes of larger jetted-AGN, as opposed to ``young''. We show that there is a sharp upper cutoff in the CSO 2 size distribution at ≈500\approx 500 pc. The distinct differences between most CSO 2s and other jetted-AGN provides a crucial new time domain window on the formation and evolution of relativistic jets in AGN and the supermassive black holes that drive them.Comment: 29 pages, 10 figures, 7 tables, accepted for publicatio

    RoboPol: First season rotations of optical polarization plane in blazars

    Get PDF
    We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring program of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the dataset obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations have significantly larger amplitude and faster variations of polarization angle in optical than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5×10−2\le 1.5 \times 10^{-2}) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (∼5×10−5\sim 5 \times 10^{-5}) that none of our rotations is physically connected with an increase in gamma-ray activity.Comment: 16 pages, 9 figure
    • …
    corecore