432 research outputs found

    Constraining the limiting brightness temperature and Doppler factors for the largest sample of radio bright blazars

    Get PDF
    Relativistic effects dominate the emission of blazar jets complicating our understanding of their intrinsic properties. Although many methods have been proposed to account for them, the variability Doppler factor method has been shown to describe the blazar populations best. We use a Bayesian hierarchical code called {\it Magnetron} to model the light curves of 1029 sources observed by the Owens Valley Radio Observatory's 40-m telescope as a series of flares with an exponential rise and decay, and estimate their variability brightness temperature. Our analysis allows us to place the most stringent constraints on the equipartition brightness temperature i.e., the maximum achieved intrinsic brightness temperature in beamed sources which we found to be ⟨Teq⟩=2.78×1011K±26%\rm \langle T_{eq}\rangle=2.78\times10^{11}K\pm26\%. Using our findings we estimated the variability Doppler factor for the largest sample of blazars increasing the number of available estimates in the literature by almost an order of magnitude. Our results clearly show that γ\gamma-ray loud sources have faster and higher amplitude flares than γ\gamma-ray quiet sources. As a consequence they show higher variability brightness temperatures and thus are more relativistically beamed, with all of the above suggesting a strong connection between the radio flaring properties of the jet and γ\gamma-ray emission.Comment: 14 pages, 8 figures, accepted for publication in AP

    Demonstration of magnetic field tomography with starlight polarization towards a diffuse sightline of the ISM

    Get PDF
    The availability of large datasets with stellar distance and polarization information will enable a tomographic reconstruction of the (plane-of-the-sky-projected) interstellar magnetic field in the near future. We demonstrate the feasibility of such a decomposition within a small region of the diffuse ISM. We combine measurements of starlight (R-band) linear polarization obtained using the RoboPol polarimeter with stellar distances from the second Gaia data release. The stellar sample is brighter than 17 mag in the R band and reaches out to several kpc from the Sun. HI emission spectra reveal the existence of two distinct clouds along the line of sight. We decompose the line-of-sight-integrated stellar polarizations to obtain the mean polarization properties of the two clouds. The two clouds exhibit significant differences in terms of column density and polarization properties. Their mean plane-of-the-sky magnetic field orientation differs by 60 degrees. We show how our tomographic decomposition can be used to constrain our estimates of the polarizing efficiency of the clouds as well as the frequency dependence of the polarization angle of polarized dust emission. We also demonstrate a new method to constrain cloud distances based on this decomposition. Our results represent a preview of the wealth of information that can be obtained from a tomographic map of the ISM magnetic field.Comment: 25 pages, 14 figures, published in ApJ, data appear in journa

    Scale invariant jets: from blazars to microquasars

    Get PDF
    Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many cases observations support such hypotheses for microquasars and Seyfert galaxies, little is known on whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multiwavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broad-band radio luminosity and black hole mass, which extends over ∼\sim 9 orders of magnitude down to microquasars scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor, and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens-of-solar mass black holes, immediately applicable to cases as those recently observed by LIGO.Comment: 13 pages, 4 figures, accepted for publication in AP

    37th International Cosmic Ray Conference (ICRC2021)

    Get PDF
    The detection of the flaring gamma-ray blazar TXS 0506+056 in spatial and temporal coincidence with the high-energy neutrino IC-170922A represents a milestone for multi-messenger astronomy. The prompt multi-wavelength coverage from several ground- and space-based facilities of this special event was enabled thanks to the key role of the Fermi-Large Area Telescope (LAT), continuously monitoring the gamma-ray sky. Exceptional variable and transient events, such as bright gamma-ray flares of blazars, are regularly reported to the whole astronomical community to enable prompt multi-wavelength observations of the astrophysical sources. As soon as realtime IceCube high-energy neutrino event alerts are received, the relevant positions are searched, at multiple timescales, for gamma-ray activity from known sources and newly detected emitters positionally consistent with the neutrino localization.In this contribution, we present an overview of follow-up activities and strategies for the realtime neutrino alerts with the Fermi-LAT, focusing on some interesting coincidences observed with gamma-ray sources. We will also discuss future plans and improvements in the strategies for the identification of gamma-ray counterparts of single high-energy neutrinos.</p

    The hunt for extraterrestrial high-energy neutrino counterparts

    Full text link
    The origin of Petaelectronvolt (PeV) astrophysical neutrinos is fundamental to our understanding of the high-energy Universe. Apart from the technical challenges of operating detectors deep below ice, oceans, and lakes, the phenomenological challenges are even greater than those of gravitational waves; the sources are unknown, hard to predict, and we lack clear signatures. Neutrino astronomy therefore represents the greatest challenge faced by the astronomy and physics communities thus far. The possible neutrino sources range from accretion disks and tidal disruption events, to relativistic jets and galaxy clusters with blazar TXS~0506+056 the most compelling association thus far. Since that association, immense effort has been put into proving or disproving that jets are indeed neutrino emitters, but to no avail. By generating simulated neutrino counterpart samples, we explore the potential of detecting a significant correlation of neutrinos with jets from active galactic nuclei. We find that, given the existing challenges, even our best experiments could not have produced a >3σ>3\sigma result. Larger programs over the next few years will be able to detect a significant correlation only if the brightest radio sources, rather than all jetted active galactic nuclei, are neutrino emitters. We discuss the necessary strategies required to steer future efforts into successful experiments.Comment: 8 pages, 1 figure, 1 table, accepted for publication in A&

    Compact Symmetric Objects -- I Towards a Comprehensive Bona Fide Catalog

    Full text link
    Compact Symmetric Objects (CSOs) are jetted Active Galactic Nuclei (AGN) with overall projected size <1 kpc. The classification was introduced to distinguish these objects from the majority of compact jetted-AGN in centimeter wavelength very long baseline interferometry observations, where the observed emission is relativistically boosted towards the observer. The original classification criteria for CSOs were: (i) evidence of emission on both sides of the center of activity, and (ii) overall size <1 kpc. However some relativistically boosted objects with jet axes close to the line of sight appear symmetric and have been mis-classified as CSOs, thereby undermining the CSO classification. This is because two essential CSO properties, pointed out in the original papers, have been neglected: (iii) low variability, and (iv) low apparent speeds along the jets. As a first step towards creating a comprehensive catalog of ``bona fide'' CSOs, we identify 79 bona fide CSOs, including 15 objects claimed as confirmed CSOs here for the first time, that match the CSO selection criteria. This sample of bona fide CSOs can be used for astrophysical studies of CSOs without contamination by mis-classified CSOs. We show that the fraction of CSOs in complete flux density limited AGN samples with S5 GHz_{\rm 5\,GHz} >700 mJy is between (6.8±1.6)(6.8\pm1.6)% and (8.5±1.8)(8.5\pm1.8)%.Comment: 28 pages, 9 figures, 3 tables, accepted for publicatio

    RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars

    Get PDF
    We use results of our 3 year polarimetric monitoring program to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by {\em RoboPol} is analysed together with the gamma-ray data provided by {\em Fermi}-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time scales of rotations and flares are marginally correlated.Comment: 12 pages, 16 figures, accepted to MNRA

    Compact Symmetric Objects -- II Confirmation of a Distinct Population of High-Luminosity Jetted Active Galaxies

    Full text link
    Compact Symmetric Objects (CSOs) are compact (<1 kpc), jetted Active Galactic Nuclei (AGN), whose jet axes are not aligned close to the line of sight, and whose observed emission is not predominantly relativistically boosted towards us. Two classes of CSOs have previously been identified: approximately one fifth are edge-dimmed and designated as CSO 1s, while the rest are edge brightened and designated as CSO 2s. This paper focuses almost exclusively on CSO 2s. Using complete samples of CSO 2s we present three independent lines of evidence, based on their relative numbers, redshift distributions, and size distributions, which show conclusively that the vast majority (> 99%) of CSO 2s do not evolve into larger-scale radio sources. These CSO 2s belong to a distinct population of jetted-AGN, which should be characterized as ``short-lived'' compared to the classes of larger jetted-AGN, as opposed to ``young''. We show that there is a sharp upper cutoff in the CSO 2 size distribution at ≈500\approx 500 pc. The distinct differences between most CSO 2s and other jetted-AGN provides a crucial new time domain window on the formation and evolution of relativistic jets in AGN and the supermassive black holes that drive them.Comment: 29 pages, 10 figures, 7 tables, accepted for publicatio
    • …
    corecore