1,366 research outputs found
Toy model for the acceleration of blazar jets
Context: Understanding the acceleration mechanism of astrophysical jets has
been a cumbersome endeavor from both the theoretical and observational
perspective. Although several breakthroughs have been achieved in recent years,
on all sides, we are still missing a comprehensive model for the acceleration
of astrophysical jets. Aims: In this work we attempt to construct a simple toy
model that can account for several observational and theoretical results and
allow us to probe different aspects of blazar jets usually inaccessible to
observations. Methods: We used the toy model and Lorentz factor estimates from
the literature to constrain the black hole spin and external pressure gradient
distributions of blazars. Results: Our results show that (1) the model can
reproduce the velocity, spin and external pressure gradient of the jet in M87
inferred independently by observations; (2) blazars host highly spinning black
holes with 99% of BL Lac objects and 80% of flat spectrum radio quasars having
spins a>0.6; (3) the dichotomy between BL Lac objects and Flat Spectrum Radio
Quasars could be attributed to their respective accretion rates. Using the
results of the proposed model, we estimated the spin and external pressure
gradient for 75 blazars.Comment: 7 pages, 2 figures, published in A&A, minor text replaced to match
journa
Detecting the Elusive Blazar Counter-Jets
Detection of blazar pc scale counter-jets is difficult, but it can provide
invaluable insight into the relativistic effects, radiative processes and the
complex mechanisms of jet production, collimation and accelation in blazars. We
build on recent populations models (optimized using the MOJAVE apparent
velocity and redshift distributions) in order to derive the distribution of
jet-to-counter-jet ratios and the flux densities of the counter-jet at
different frequencies, in an effort to set minimum sensitivity limits required
for existing and future telescope arrays in order to detect these elusive
counter-jets. We find that: for the BL Lacs of their counter-jets have a
flux-density higher than 100mJy, are higher than 10 mJy, and have
higher flux-density than 1 mJy, whereas for the FSRQs have a flux-density
higher than 10mJy, are higher than 1 mJy, and are higher than 0.1
mJy (at 15 GHz). Future telescopes like the SKA and newly operating like
e-MERLIN and JVLA may detect up to of the BL Lac and of the FSRQ
counter-jets. Sources with both low apparent velocity and a low Doppler factor
make prime candidates for counter-jet detection. Combining our findings with
literature values we have identified five such counter-jet detection
candidates. Finally, we discuss possible effects beyond relativistic deboosting
that may complicate the detection of counter-jets and that need to be accounted
for in the interpretation of detections.Comment: 13 pages, 15 figures, accepted for publication in MNRA
Limb Lengthening Using the PRECICE<sup>TM</sup> Nail System: Complications and Results
Background: Three types of telescopic nails are mainly used for intramedullary limb lengthening nowadays. Despite some important advantages of this new technology (e.g. controlled distraction rate, not restricted availability, possibility to perform accordion maneuvers), few articles exist on clinical results and complications after lengthening with the PRECICETM nail (Ellipse, USA).
Objectives: The aim of the current study was to describe and analyze the complications associated with lengthening with the PRECICETM nail. Are the problems preventable when using the PRECICE, related to the distraction rate control, the lengthening goals and technique and handling?
Methods: We retrospectively reviewed the charts of 9 patients operated between 2012 and 2013 with a PRECICETM nail for a leg length discrepancy (LLD). The mean age of the patients was 32 years (range, 17 - 48 years). There were 5 femoral and 4 tibial procedures. The causes of LLD were posttraumatic (n = 5) and congenital (n = 4). The mean LLD was 36.4 ± 11.4 mm. The minimum follow-ups were 2 months (average, 5 months; range, 2 - 9 months).
Results: The mean distraction rate was 0.5 ± 0.1 mm/day. We observed in 7 patients differences in achieving the lengthening goals (average, 1.6 mm; range, -20.0 - 5.0 mm). Average lengthening was 34.7 ± 10.7 mm. All patients reached normal alignment and normal joint orientation. An unintentional loss of the achieved length during the consolidation phase was noticed in patients with delayed bone healing in two cases. In the first case (loss of 20mm distraction) the nail could be redistracted and the goal length was achieved. In the second case (loss of 10mm distraction) the nail broke shortly after the diagnosis and the nail was exchanged.
Conclusions: We report of loss of achieved length after lengthening with a telescopic nail. Weight bearing before complete consolidation of the regenerate might be a risk factor for that. Thorough examination of the limb length and careful evaluation of the radiographs are required in the follow-up period. The PRECICE nail system requires the same vigilance like the other intramedullary systems too
Optical EVPA rotations in blazars: testing a stochastic variability model with RoboPol data
We identify rotations of the polarization angle in a sample of blazars observed for three seasons with the RoboPol instrument. A simplistic stochastic variability model is tested against this sample of rotation events. The model is capable of producing samples of rotations with parameters similar to the observed ones, but fails to reproduce the polarization fraction at the same time. Even though we can neither accept nor conclusively reject the model, we point out various aspects of the observations that are fully consistent with a random walk process
F-GAMMA: Variability Doppler factors of blazars from multiwavelength monitoring
Recent population studies have shown that the variability Doppler factors can
adequately describe blazars as a population. We use the flux density variations
found within the extensive radio multi-wavelength datasets of the F-GAMMA
program, a total of 10 frequencies from 2.64 up to 142.33 GHz, in order to
estimate the variability Doppler factors for 58 -ray bright sources,
for 20 of which no variability Doppler factor has been estimated before. We
employ specifically designed algorithms in order to obtain a model for each
flare at each frequency. We then identify each event and track its evolution
through all the available frequencies for each source. This approach allows us
to distinguish significant events producing flares from stochastic variability
in blazar jets. It also allows us to effectively constrain the variability
brightness temperature and hence the variability Doppler factor as well as
provide error estimates. Our method can produce the most accurate (16\% error
on average) estimates in the literature to date.Comment: 9 pages, 7 figures, accepted for publication in MNRA
- …
