77 research outputs found
Male-Produced Aggregation Pheromones of the Cerambycid Beetles Xylotrechus colonus and Sarosesthes fulminans
Adults of both sexes of the cerambycid beetles Xylotrechus colonus (F.) and Sarosesthes fulminans (F.) were attracted to odors produced by male conspecifics in olfactometer bioassays. Analyses of headspace volatiles from adults revealed that male X. colonus produced a blend of (R)- and (S)-3-hydroxyhexan-2-one and (2 S,3 S)- and (2R,3R)-2,3-hexanediol, whereas male S. fulminans produced (R)-3-hydroxyhexan-2-one and (2 S,3R)-2,3-hexanediol. All of these compounds were absent in the headspace of females. Two field bioassays were conducted to confirm the biological activity of the synthesized pheromones: (1) enantiomerically enriched pheromone components were tested singly and in species-specific blends and (2) four-component mixture of racemic 3-hydroxyhexan-2-one plus racemic 2-hydroxyhexan-3-one and the four-component blend of the stereoisomers of 2,3-hexanediols were tested separately and as a combined eight-component blend. In these experiments, adult male and female X. colonus were captured in greatest numbers in traps baited with the reconstructed blend of components produced by males, although significant numbers were also captured in traps baited with (R)-3-hydroxyhexan-2-one alone or in blends with other compounds. Too few adult S. fulminans were captured for a statistical comparison among treatments, but all were caught in traps baited with lures containing (R)-3-hydroxyhexan-2-one. In addition to these two species, adults of two other species of cerambycid beetles, for which pheromones had previously been identified, were caught: Neoclytus a. acuminatus (F.) and its congener Neoclytus m. mucronatus (F.). Cross-attraction of beetles to pheromone blends of other species, and to individual pheromone components that are shared by two or more sympatric species, may facilitate location of larval hosts by species that compete for the same host species
Modelling a Historic Oil-Tank Fire Allows an Estimation of the Sensitivity of the Infrared Receptors in Pyrophilous Melanophila Beetles
Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection
The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood
Background: The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors.\ud
\ud
Methodology/Principal Findings: We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle.\ud
\ud
Conclusions/Significance: This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic
The Water Bugs (Heteroptera: Nepomorpha) of the Guyana Region
NEPOMORPHA OF THE GUYANA REGION
The Nepomorpha of the Guyana Region are keyed out and described. In addition distributional, faunistical and comparative notes on the species are given.
New species and subspecies: Ochterus aeneifrons surinamensis, O. tenebrosus; Limnocoris fittkaui surinamensis; Ranatra adelomorpha; Neoplea globoidea; Buenoa amnigenopsis; Tenagobia pseudoromani from Suriname and Ranatra ornitheia from Guyana.
New synonyms (junior ones between parenthesis): Gelaslocorus flavus flavus Guér. (G. nebulosus nebulosus Guér.); Pelocoris impicticollis Stål (P. horváthi Mont.), P. poeyi (Guér.) not identical with P. femoratus (P.-B.) (P. convexus Nieser), P. procurrens White (P. minutus Mont.); Belostoma bicavum Lauck ( B. parvoculum Lauck); Ranatra doesburgi De Carlo (R. usingeri De C.), R. macrophthalma H.-S. (R. surinamensis De C.), R. mediana Mont. (R. williamsi Kuitert), R. obscura Mont. (R. annulipes White 1879 not Stål), R. sarmentoi De C. (R. ameghinoi De C.); Buenoa amnigenopsis n. sp. ( B. amnigenus Nieser 1968, 1970 not White), B. amnigenus (White) (B. amnigenoidea Nieser 1970), B. nitida Truxal (B. doesburgi Nieser); Heterocorixa surinamensis Nieser ( H. boliviensis Nieser 1970 not Hungerford); Tenagobia incerta Lundbl. ( T. signata and T. serrata in part, Nieser 1970 not White and Deay respectively), T. socialis (White) (T. serrata in part, Nieser 1970 not Deay)
- …