58 research outputs found

    Sex differences in the neuronal transcriptome and synaptic mitochondrial function in the cerebral cortex of a multiple sclerosis model

    Get PDF
    IntroductionMultiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE).MethodsNeurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes.ResultsRNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays.DiscussionCortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men

    Application of a Mechanistic Model to Evaluate Putative Mechanisms of Tolvaptan Drug-Induced Liver Injury and Identify Patient Susceptibility Factors

    Get PDF
    Tolvaptan is a selective vasopressin V2 receptor antagonist, approved in several countries for the treatment of hyponatremia and autosomal dominant polycystic kidney disease (ADPKD). No liver injury has been observed with tolvaptan treatment in healthy subjects and in non-ADPKD indications, but ADPKD clinical trials showed evidence of drug-induced liver injury (DILI). Although all DILI events resolved, additional monitoring in tolvaptan-treated ADPKD patients is required. In vitro assays identified alterations in bile acid disposition and inhibition of mitochondrial respiration as potential mechanisms underlying tolvaptan hepatotoxicity. This report details the application of DILIsym software to determine whether these mechanisms could account for the liver safety profile of tolvaptan observed in ADPKD clinical trials. DILIsym simulations included physiologically based pharmacokinetic estimates of hepatic exposure for tolvaptan and2 metabolites, and their effects on hepatocyte bile acid transporters and mitochondrial respiration. The frequency of predicted alanine aminotransferase (ALT) elevations, following simulated 90/30 mg split daily dosing, was 7.9% compared with clinical observations of 4.4% in ADPKD trials. Toxicity was multifactorial as inhibition of bile acid transporters and mitochondrial respiration contributed to the simulated DILI. Furthermore, simulation analysis identified both pre-treatment risk factors and on-treatment biomarkers predictive of simulated DILI. The simulations demonstrated that in vivo hepatic exposure to tolvaptan and the DM-4103 metabolite, combined with these 2 mechanisms of toxicity, were sufficient to account for the initiation of tolvaptan-mediated DILI. Identification of putative risk-factors and potential novel biomarkers provided insight for the development of mechanism-based tolvaptan risk-mitigation strategies

    A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets

    Get PDF
    The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells

    Measuring CPT-1-mediated respiration in permeabilized cells and isolated mitochondria.

    No full text
    Carnitine palmitoyltransferase-1 (CPT-1) is a rate-controlling enzyme for long-chain fatty acid oxidation. This manuscript provides protocols for measuring CPT-1-mediated respiration in permeabilized, adherent cell monolayers and mitochondria freshly isolated from tissue, along with examples to assess the potency and specificity of interventions targeting CPT-1. Strengths of the approach include ease, speed, and breadth of analysis, whereas drawbacks include loss of physiological regulation in reductionist systems and indirect assessment of CPT-1 enzymatic activity. For complete details on the use and execution of this protocol, please refer to Divakaruni et al. (2018)

    Characterizing the metabolic profile of dexamethasone treated human trabecular meshwork cells

    No full text
    The trabecular meshwork (TM) is the leading site of aqueous humor outflow in the eye and plays a critical role in maintaining normal intraocular pressure. When the TM fails to maintain normal intraocular pressure, glaucoma may develop. Mitochondrial damage has previously been found in glaucomatous TM cells; however, the precise metabolic activity of glaucomatous TM cells has yet to be quantitatively assessed. Using dexamethasone (Dex) treated primary human TM cells to model glaucomatous TM cells, we measure the respiratory and glycolytic activity of Dex-treated TM cells with an extracellular flux assay. We found that Dex-treated TM cells had quantifiably altered metabolic profiles, including increased spare respiratory capacity and ATP production rate from oxidative phosphorylation. Therefore, we propose that reversing or preventing these metabolic changes may represent an avenue for future research

    Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives

    No full text
    Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample

    TNFα-Induced Oxidative Stress and Mitochondrial Dysfunction Alter Hypothalamic Neurogenesis and Promote Appetite Versus Satiety Neuropeptide Expression in Mice

    No full text
    Maternal obesity results in programmed offspring hyperphagia and obesity. The increased offspring food intake is due in part to the preferential differentiation of hypothalamic neuroprogenitor cells (NPCs) to orexigenic (AgRP) vs. anorexigenic (POMC) neurons. The altered neurogenesis may involve hypothalamic bHLH (basic helix–loop–helix) neuroregulatory factors (Hes1, Mash1, and Ngn3). Whilst the underlying mechanism remains unclear, it is known that mitochondrial function is critical for neurogenesis and is impacted by proinflammatory cytokines such as TNFα. Obesity is associated with the activation of inflammation and oxidative stress pathways. In obese pregnancies, increased levels of TNFα are seen in maternal and cord blood, indicating increased fetal exposure. As TNFα influences neurogenesis and mitochondrial function, we tested the effects of TNFα and reactive oxidative species (ROS) hydrogen peroxide (H2O2) on hypothalamic NPC cultures from newborn mice. TNFα treatment impaired NPC mitochondrial function, increased ROS production and NPC proliferation, and decreased the protein expression of proneurogenic Mash1/Ngn3. Consistent with this, AgRP protein expression was increased and POMC was decreased. Notably, treatment with H2O2 produced similar effects as TNFα and also reduced the protein expression of antioxidant SIRT1. The inhibition of STAT3/NFκB prevented the effects of TNFα, suggesting that TNFα mediates its effects on NPCs via mitochondrial-induced oxidative stress that involves both signaling pathways

    A novel approach to measure complex V ATP hydrolysis in frozen cell lysates and tissue homogenates

    No full text
    Mitochondrial depolarization can initiate reversal activity of ATP synthase, depleting ATP by its hydrolysis. We have recently shown that increased ATP hydrolysis contributes to ATP depletion leading to a maladaptation in mitochondrial disorders, where maximal hydrolytic capacity per CV content is increasing. However, despite its importance, ATP hydrolysis is not a commonly studied parameter because of the limitations of the currently available methods. Methods that measure CV hydrolytic activity indirectly require the isolation of mitochondria and involve the introduction of detergents, preventing their utilization in clinical studies or any high-throughput analyses. Here, we describe a novel approach to assess maximal ATP hydrolytic capacity and maximal respiratory capacity in a single assay in cell lysates, PBMCs, and tissue homogenates that were previously frozen. The methodology described here has the potential to be used in clinical samples to determine adaptive and maladaptive adjustments of CV function in diseases, with the added benefit of being able to use frozen samples in a high-throughput manner and to explore ATP hydrolysis as a drug target for disease treatment.This work was supported by National Institutes of Health grants: CURE—DDRC NIH-NIDDK, P30 DK041301 (M Liesa); UCLA/UCSD DERC NIH-NIDDK—P30 DK063491 (M Liesa), R01 DK099618-05 (OS Shirihai), R01 CA232056-01 (OS Shirihai), R21AG060456-01 (OS Shirihai), and R21 AG063373-01 (OS Shirihai); ADA—1-19-IBS-049 (OS Shirihai) and R35GM138003 (AS Divakaruni); the WM Keck Foundation (AS Divakaruni); and Seed Award from DGSOM at UCLA (M Liesa)
    • …
    corecore