10 research outputs found
Human Herpesvirus 6 (HHV-6) Causes Severe Thymocyte Depletion in SCID-hu Thy/Liv Mice
Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that may act as a cofactor in the progression of AIDS. Here, we describe the first small animal model of HHV-6 infection. HHV-6 subgroup A, strain GS, efficiently infected the human thymic tissue implanted in SCID-hu Thy/Liv mice, leading to the destruction of the graft. Viral DNA was detected in Thy/Liv implants by quantitative polymerase chain reaction (PCR) as early as 4 d after inoculation and peaked at day 14. The productive nature of the infection was confirmed by electron microscopy and immunohistochemical staining. Atypical thymocytes with prominent nuclear inclusions were detected by histopathology. HHV-6 replication was associated with severe, progressive thymocyte depletion involving all major cellular subsets. However, intrathymic T progenitor cells (ITTPs) appeared to be more severely depleted than the other subpopulations, and a preferred tropism of HHV-6 for ITTPs was demonstrated by quantitative PCR on purified thymocyte subsets. These findings suggest that thymocyte depletion by HHV-6 may be due to infection and destruction of these immature T cell precursors. Similar results were obtained with strain PL-1, a primary isolate belonging to subgroup B. The severity of the lesions observed in this animal model underscores the possibility that HHV-6 may indeed be immunosuppressive in humans
Helping children learn mathematics
Este libro está dirigido a profesores de matemáticas de enseñanza primaria, está diseñado para ayudar a los niños a aprender conceptos matemáticos, asà como a resolver problemas con estrategias. El libro está formado por dieciocho capÃtulos: la importancia de las matemáticas en el mundo moderno, ayudar a los niños a aprender matemáticas, estrategias para resolver problemas, estrategias para contar, números cardinales y ordinales, como usar calculadoras, enseñar algoritmos, multiplicación, suma, resta y división, operaciones con fracciones, decimales, porcentajes, sÃmbolos de algebra, geometrÃa, interpretar resultados, estadÃsticas y gráficos.Biblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San AgustÃn, 5 - 3 planta; 28014 Madrid; Tel. +34917748000; [email protected]
Human Immunodeficiency Virus Type 1 Nef-Mediated Downregulation of CD4 Correlates with Nef Enhancement of Viral Pathogenesis
The nef gene products encoded by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus type 1 (SIV-1) increase viral loads in infected hosts and accelerate clinical progression to AIDS. Nef exhibits a spectrum of biological activities, including the ability to downregulate surface expression of CD4 and major histocompatibility complex (MHC) class I antigens, to alter the state of T-cell activation, and to enhance the infectivity of viral particles. To determine which of these in vitro functions most closely correlates with the pathogenic effects of Nef in vivo, we constructed recombinant HIV-1 NL4-3 viruses carrying mutations within the nef gene that selectively impair these functions. These mutant viruses were evaluated for pathogenic potential in severe combined immunodeficiency (SCID) mice implanted with human fetal thymus and liver (SCID-hu Thy/Liv mice), in which virus-mediated depletion of thymocytes is known to be Nef dependent. Disruption of the polyproline type II helix (Pxx)(4) within Nef (required for binding of Hck and p21-activated kinase-like kinases, downregulation of MHC class I, and enhancement of HIV-1 infectivity in vitro but dispensable for CD4 downregulation) did not impair thymocyte depletion in virus-infected Thy/Liv human thymus implants. Conversely, three separate point mutations in Nef that compromised its ability to downregulate CD4 attenuated thymocyte depletion while not diminishing viral replication. These findings indicate that the functional ability of Nef to downregulate CD4 and not MHC class I downregulation, Hck or PAK binding, or (Pxx)(4)-associated enhancement of infectivity most closely correlates with Nef-mediated enhancement of HIV-1 pathogenicity in vivo. Nef-mediated CD4 downregulation merits consideration as a new target for the development of small-molecule inhibitors
CCR5- and CXCR4-Utilizing Strains of Human Immunodeficiency Virus Type 1 Exhibit Differential Tropism and Pathogenesis In Vivo
CCR5-utilizing (R5) and CXCR4-utilizing (X4) strains of human immunodeficiency virus type 1 (HIV-1) have been studied intensively in vitro, but the pathologic correlates of such differential tropism in vivo remain incompletely defined. In this study, X4 and R5 strains of HIV-1 were compared for tropism and pathogenesis in SCID-hu Thy/Liv mice, an in vivo model of human thymopoiesis. The X4 strain NL4-3 replicates quickly and extensively in thymocytes in the cortex and medulla, causing significant depletion. In contrast, the R5 strain Ba-L initially infects stromal cells including macrophages in the thymic medulla, without any obvious pathologic consequence. After a period of 3 to 4 weeks, Ba-L infection slowly spreads through the thymocyte populations, occasionally culminating in thymocyte depletion after week 6 of infection. During the entire time of infection, Ba-L did not mutate into variants capable of utilizing CXCR4. Therefore, X4 strains are highly cytopathic after infection of the human thymus. In contrast, infection with R5 strains of HIV-1 can result in a two-phase process in vivo, involving apparently nonpathogenic replication in medullary stromal cells followed by cytopathic replication in thymocytes