14 research outputs found

    Rhamnose is superior to mannitol as a monosaccharide in the dual sugar absorption test: A prospective randomized study in children with treatment-naïve celiac disease

    Get PDF
    BACKGROUND AND AIM: We sought to correlate two different measures of gut permeability [lactulose:mannitol (L:M) and lactulose:rhamnose (L:R)] to the severity of duodenal histopathology in children with and without elevated antibodies to tissue transglutaminase (tTG). A secondary objective was to correlate gut permeability with celiac disease (CD) serology and indices of inflammation and bacterial product translocation. METHODS: We prospectively randomized children undergoing endoscopy with abnormal ( RESULTS: Of the 54 cases with positive celiac serology, 31 and 69% had modified Marsh 0/1 scores or ≥3a, respectively. Circulating tTG IgA correlated with the modified Marsh score ( CONCLUSIONS: L:R, but not L:M, is associated with modified Marsh scores in children undergoing small bowel biopsy for suspected CD. Despite increased intestinal permeability, we see scant evidence of systemic exposure to gut microbes in these children. Gut permeability testing with L:R may predict which patients with abnormal celiac serology will have biopsy evidence for celiac disease and reduce the proportion of such patients undergoing endoscopy whose Marsh scores are ≤1. M should not be used as a monosaccharide for permeability testing in children

    A phase 1/2 open label nonrandomized clinical trial of intravenous 2-hydroxypropyl-β-cyclodextrin for acute liver disease in infants with Niemann-Pick C1

    Get PDF
    Introduction: Niemann-Pick C (NPC) is an autosomal recessive disease due to defective NPC1 or NPC2 proteins resulting in Methods: Infants received intravenous 2HPBCD twice a week for 6 weeks, followed by monthly infusion for 6-months. Primary outcome measure was reduction of plasma (3β,5α,6β-trihydroxy-cholan-24-oyl) glycine (TCG), a bile acid generated from cholesterol sequestered in lysosome. Results: Three participants completed this protocol. A fourth patient received intravenous 2HPBCD under an emergency investigational new drug study but later expired from her underlying condition. The three protocol patients are living and have improved liver enzymes and TCG. No patient has experienced a drug-related adverse event. Conclusion: Intravenous 2HPBCD was tolerated in three infants with liver disease due to NPC

    Longitudinal gut virome analysis identifies specific viral signatures that precede necrotizing enterocolitis onset in preterm infants

    Get PDF
    Necrotizing enterocolitis (NEC) is a serious consequence of preterm birth and is often associated with gut bacterial microbiome alterations. However, little is known about the development of the gut virome in preterm infants, or its role in NEC. Here, using metagenomic sequencing, we characterized the DNA gut virome of 9 preterm infants who developed NEC and 14 gestational age-matched preterm infants who did not. Infants were sampled longitudinally before NEC onset over the first 11 weeks of life. We observed substantial interindividual variation in the gut virome between unrelated preterm infants, while intraindividual variation over time was significantly less. We identified viral and bacterial signatures in the gut that preceded NEC onset. Specifically, we observed a convergence towards reduced viral beta diversity over the 10 d before NEC onset, which was driven by specific viral signatures and accompanied by specific viral-bacterial interactions. Our results indicate that bacterial and viral perturbations precede the sudden onset of NEC. These findings suggest that early life virome signatures in preterm infants may be implicated in NEC

    Patterned progression of bacterial populations in the premature infant gut.

    No full text
    In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33-36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration. Proc Natl Acad Sci U S A 2014 Aug 26; 111(34):12522-7

    Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study.

    No full text
    BACKGROUND: Gut bacteria might predispose to or protect from necrotising enterocolitis, a severe illness linked to prematurity. In this observational prospective study we aimed to assess whether one or more bacterial taxa in the gut differ between infants who subsequently develop necrotising enterocolitis (cases) and those who do not (controls). METHODS: We enrolled very low birthweight (1500 g and lower) infants in the primary cohort (St Louis Children\u27s Hospital) between July 7, 2009, and Sept 16, 2013, and in the secondary cohorts (Kosair Children\u27s Hospital and Children\u27s Hospital at Oklahoma University) between Sept 12, 2011 and May 25, 2013. We prospectively collected and then froze stool samples for all infants. Cases were defined as infants whose clinical courses were consistent with necrotising enterocolitis and whose radiographs fulfilled criteria for Bell\u27s stage 2 or 3 necrotising enterocolitis. Control infants (one to four per case; not fixed ratios) with similar gestational ages, birthweight, and birth dates were selected from the population after cases were identified. Using primers specific for bacterial 16S rRNA genes, we amplified and then pyrosequenced faecal DNA from stool samples. With use of Dirichlet multinomial analysis and mixed models to account for repeated measures, we identified host factors, including development of necrotising enterocolitis, associated with gut bacterial populations. FINDINGS: We studied 2492 stool samples from 122 infants in the primary cohort, of whom 28 developed necrotising enterocolitis; 94 infants were used as controls. The microbial community structure in case stools differed significantly from those in control stools. These differences emerged only after the first month of age. In mixed models, the time-by-necrotising-enterocolitis interaction was positively associated with Gammaproteobacteria (p=0·0010) and negatively associated with strictly anaerobic bacteria, especially Negativicutes (p=0·0019). We studied 1094 stool samples from 44 infants in the secondary cohorts. 18 infants developed necrotising enterocolitis (cases) and 26 were controls. After combining data from all cohorts (166 infants, 3586 stools, 46 cases of necrotising enterocolitis), there were increased proportions of Gammaproteobacteria (p=0·0011) and lower proportions of both Negativicutes (p=0·0013) and the combined Clostridia-Negativicutes class (p=0·0051) in infants who went on to develop necrotising enterocolitis compared with controls. These associations were strongest in both the primary cohort and the overall cohort for infants born at less than 27 weeks\u27 gestation. INTERPRETATION: A relative abundance of Gammaproteobacteria (ie, Gram-negative facultative bacilli) and relative paucity of strict anaerobic bacteria (especially Negativicutes) precede necrotising enterocolitis in very low birthweight infants. These data offer candidate targets for interventions to prevent necrotising enterocolitis, at least among infants born at less than 27 weeks\u27 gestation. FUNDING: National Institutes of Health (NIH), Foundation for the NIH, the Children\u27s Discovery Institute. Lancet 2016 May 7; 387(10031):1928-3

    Social and psychological adversity are associated with distinct mother and infant gut microbiome variations

    Get PDF
    Abstract Health disparities are driven by underlying social disadvantage and psychosocial stressors. However, how social disadvantage and psychosocial stressors lead to adverse health outcomes is unclear, particularly when exposure begins prenatally. Variations in the gut microbiome and circulating proinflammatory cytokines offer potential mechanistic pathways. Here, we interrogate the gut microbiome of mother-child dyads to compare high-versus-low prenatal social disadvantage, psychosocial stressors and maternal circulating cytokine cohorts (prospective case-control study design using gut microbiomes from 121 dyads profiled with 16 S rRNA sequencing and 89 dyads with shotgun metagenomic sequencing). Gut microbiome characteristics significantly predictive of social disadvantage and psychosocial stressors in the mothers and children indicate that different discriminatory taxa and related pathways are involved, including many species of Bifidobacterium and related pathways across several comparisons. The lowest inter-individual gut microbiome similarity was observed among high-social disadvantage/high-psychosocial stressors mothers, suggesting distinct environmental exposures driving a diverging gut microbiome assembly compared to low-social disadvantage/low-psychosocial stressors controls (P = 3.5 × 10−5 for social disadvantage, P = 2.7 × 10−15 for psychosocial stressors). Children’s gut metagenome profiles at 4 months also significantly predicted high/low maternal prenatal IL-6 (P = 0.029), with many bacterial species overlapping those identified by social disadvantage and psychosocial stressors. These differences, based on maternal social and psychological status during a critical developmental window early in life, offer potentially modifiable targets to mitigate health inequities

    Performance of an electronic health record-based phenotype algorithm to identify community associated methicillin-resistant Staphylococcus aureus cases and controls for genetic association studies

    Get PDF
    Abstract Background Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is one of the most common causes of skin and soft tissue infections in the United States, and a variety of genetic host factors are suspected to be risk factors for recurrent infection. Based on the CDC definition, we have developed and validated an electronic health record (EHR) based CA-MRSA phenotype algorithm utilizing both structured and unstructured data. Methods The algorithm was validated at three eMERGE consortium sites, and positive predictive value, negative predictive value and sensitivity, were calculated. The algorithm was then run and data collected across seven total sites. The resulting data was used in GWAS analysis. Results Across seven sites, the CA-MRSA phenotype algorithm identified a total of 349 cases and 7761 controls among the genotyped European and African American biobank populations. PPV ranged from 68 to 100% for cases and 96 to 100% for controls; sensitivity ranged from 94 to 100% for cases and 75 to 100% for controls. Frequency of cases in the populations varied widely by site. There were no plausible GWAS-significant (p < 5 E −8) findings. Conclusions Differences in EHR data representation and screening patterns across sites may have affected identification of cases and controls and accounted for varying frequencies across sites. Future work identifying these patterns is necessary
    corecore