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gut microbiome variations
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Health disparities are driven by underlying social disadvantage and psycho-
social stressors. However, how social disadvantage and psychosocial stressors
lead to adverse health outcomes is unclear, particularly when exposure begins
prenatally. Variations in the gut microbiome and circulating proinflammatory
cytokines offer potential mechanistic pathways. Here, we interrogate the gut
microbiomeofmother-child dyads to compare high-versus-lowprenatal social
disadvantage, psychosocial stressors and maternal circulating cytokine
cohorts (prospective case-control study design using gut microbiomes from
121 dyads profiled with 16 S rRNA sequencing and 89 dyads with shotgun
metagenomic sequencing). Gut microbiome characteristics significantly pre-
dictive of social disadvantage and psychosocial stressors in the mothers and
children indicate that different discriminatory taxa and related pathways are
involved, including many species of Bifidobacterium and related pathways
across several comparisons. The lowest inter-individual gut microbiome
similarity was observed among high-social disadvantage/high-psychosocial
stressors mothers, suggesting distinct environmental exposures driving a
diverging gut microbiome assembly compared to low-social disadvantage/
low-psychosocial stressors controls (P = 3.5 × 10−5 for social disadvantage,
P = 2.7 × 10−15 for psychosocial stressors). Children’s gut metagenome profiles
at 4months also significantly predicted high/low maternal prenatal IL-6
(P =0.029), with many bacterial species overlapping those identified by social
disadvantage and psychosocial stressors. These differences, based on mater-
nal social and psychological status during a critical developmental window
early in life, offer potentially modifiable targets to mitigate health inequities.

Health inequities experienced by socially disadvantaged populations
are irrefutable and urgent societal issues1,2. Psychosocial factors con-
tributing to these inequities often begin early in life and include the
prenatal environment, which has profound and lifelong effects on fetal
and infant outcomes3–5. How social disadvantage (SD) and psychoso-
cial stressors (PS) become biologically embedded and then cause
disparate health outcomes remain unclear. Many SD/PS-related mor-
bidities are associated with systemic chronic inflammation6. The gut

microbiome (GM) can shape and modulate the immune system7,8, and
is associated with systemic inflammation and autoimmune diseases,
many of which are found at higher rates in populations experien-
cing SD9–11.

The GM is itself shaped by environmental factors including the
consequences of hardships such as diet, housing, and stress. Despite
increasing awareness of an intersection between the GM and psycho-
social inequities12,13, few studies14–16 have examined their impact on
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human gut microbial community structure and function, particularly
in theperinatal period. GMstudies in pregnantwomenhave (i) focused
on maternal psychological state17–21 or socioeconomic status22–24 (but
not both), (ii) used 16 S rRNA analysis, which limits taxonomic and
metabolic profiling of GMs, and (iii) not paired maternal and infant
biologic transfer of bacteria and inflammatory phenotypes.

Understanding the dynamic interaction between the GM and
social determinants of health is of interest because of the potential for
alterability that may lessen potential GM-related health impacts25,26.
This approach would be particularly promising for the perinatal per-
iod, a critical interval in which perturbations in GM community
structure and function have long-lasting effects27–29. Using a pro-
spective birth cohort whosemothers are enrolled during gestation, we
identify the distinct association of exposure to SD and PS on GM
structure and function for mothers and their infants. By classifying
mothers and their infants as “high” or “low” SD and PS, we identify
discriminatory taxa driving this association using whole metagenomic
shotgun (WMS) sequencing. Furthermore, we investigate a potential
mechanistic link between theGMandhost responseby simultaneoulsy
examining maternal prenatal circulating cytokines.

Results and discussion
A set of 121mother–child dyads was drawn prospectively from a larger
parent study, the Early Life Adversity Biological Embedding and Risk
for Developmental Precursors of Mental Disorders Study (eLABE)30,31,
based on eligibility criteria that included infants having reached
4months of life, with available maternal prenatal 3rd trimester and
infant 4month feces (see Methods and Supplementary Fig. 1). The
calculation of the SD and PS latent factor variables were calculated
based on an a priori hypothesis (as previously published30, and pre-
viously used to identify significant SD and PS-associated differences in
brain composition at birth32,33). SD and PS status (see Methods for
computation score) had substantial variability (see cohort character-
istics in Table 1 and Supplementary Data 1a). Details of statistics for
significance values in Supplementary Data 1a are provided in Supple-
mentary Tables 1b–e.

High-level taxonomic profilingmother:child GM diversity varies
by SD/PS status, but the GM diversity is significantly associated
with SD and PS only in children
To provide an overview of GM profiles, we performed targeted bac-
terial 16 S rRNA gene sequencing (see Methods) for the 121 mother-
child dyads (Fig. 1). Across the 121 mother-child dyads (Fig. 1a), SD and
PS scores were significantly but only moderately correlated (r =0.395,
degrees of freedom= 119, P = 7.2 × 10−6, effect size statistic = 4.70, 95%
confidence interval = −1.98:1.98, two-sided-test; Fig. 1b), corroborating
the literature34 and demonstrating the importance of differentiating
effects between these twoconstructs. Sampleswere classified as “high”
and “low” SD and PS based on the score distribution across samples
(Fig. 1c; ≥+0.5 and ≤−0.5 standard deviations above and below the
average). Several variables were significantly associated with high-vs-
low SD and PS scores (Table 1). As expected, variables that were
components of SD and PS were also significantly associated, as these
variables were used as inputs to calculate the composite scores30

(Supplementary Data 1a).
Across all samples, 3072 amplicon sequence variants (ASVs)

representing unique 16 S rRNA nucleotide sequences were detected
(abundance data provided per sample in Supplementary Data 2,
nucleotide sequences are provided in Supplementary Data 3). In
mothers, SD and PS scores had negative but not significant correla-
tions with α-diversity (within-sample, measured by Faith phylogenetic
diversity35) based on the bacterial taxonomic composition, consistent
with previous reports of decreased α-diversity associated with lower
Socioeconomic Status (SES)14–16 (Fig. 2b; Supplementary Data 1f
shows complete correlation statistics). In contrast, among children,

α-diversity was significantly positively correlated with SD (r = 0.579,
degrees of freedom= 119, P = 3.6 × 10−12, effect size statistic = 7.74, 95%
confidence interval = −1.98:1.98, two-sided-test) and PS (r =0.327,
degrees of freedom= 119, P = 2.5 × 10−4, effect size statistic = 3.78, 95%
confidence interval = −1.98:1.98, two-sided-test; Fig. 2b). This obser-
vation may be partly explained by the significantly lower frequency of
breastfeeding among high-SD mothers compared to the low-SD
mothers (P = 2.1 × 10−5, χ² = 18.10, 95% confidence interval = −∞:3.84;
Table 1, Fig. 2b) as breastfed infants have lower GM α-diversity com-
pared to formula-fed infants36. Similar results were seen with α-
diversity calculated using the Shannon diversity index (Supplementary
Fig. 2), indicating a robust association regardless of the metric used.

An examination of dissimilarity (β-diversity, weighted UniFrac
distance) between mother and child GMs showed significant negative
correlations with SD (r = −0.438, degrees of freedom= 119, P = 5.0 ×
10−7, effect size statistic = −5.31, 95% confidence interval = −1.98:1.98,
two-sided-test) and PS (r = −0.295, degrees of freedom=119, P = 1.0 ×
10−3, effect size statistic = −3.37, 95% confidence interval = −1.98:1.98,
two-sided-test). This trend holds with several other measures of β-
diversity including Bray–Curtis distance, Aitchison distance37, and
unweighted UniFrac38 distance (Supplementary Fig. 3). This may be
partially due to formula-fed/high-SD infants having a GM that is more
adult-like compared to low-SD children, as reflected by their increased
alpha diversity. To further investigate differences between the overall
microbiomeprofiles, weperformed theDirichletMultinomialMixtures
(DMM) clustering approach for metagenomics39 to cluster all of the
mother and child samples based on the relative abundance of the taxa
in their GMs. Using this approach, we identified that the GMs of
mothers overall clustered separately from children, with the samples
separating optimally into two clusters that separated the children
(cluster 1, 94.5% of cluster members) from the mothers (cluster 2,
99.1% of cluster members) (visualized on an NDMS plot in Fig. 3a). For
all clustering, statistical support for cluster numbers using DMM log-
posterior loss correction39 (lplc), silhouette scores40 and prediction
strength41 is provided in Supplementary Data 1g.

Using just the mother GM samples, we identified optimal clus-
tering for two clusters (visualized on an NMDS plot in Fig. 3b), but the
clusters did not significantly differ in SD or PS (Two-sided
Mann–Whitney U-test, FDR-adjusted P = 0.944, n1 = 60, n2 = 61,
U = 1844, 95% confidence interval = 1451.9:2208.1, standardized effect
size=0.0064 and P =0.944, n1 = 60, n2 = 61, U = 1896, 95% confidence
interval=1451.9:2208.1, standardized effect size=0.031, respectively;
Supplementary Data 1e). We also identified two sample clusters as
being optimal for the children GM samples, with cluster 1 having sig-
nificantly greater SD scores than cluster 2 (two-sided Mann–Whitney
U-test; FDR-adjusted P = 2.7 × 10−9, n1 = 61, n2 = 60, U = 3021, 95% con-
fidence interval=1451.9:2208.1, standardized effect size = 0.56), and
significantly greater PS scores in cluster 1 than 2 (two-sided
Mann–Whitney U-test P = 6.9 × 10−3, n = 61, n2 = 60, U = 2395, 95%
confidence interval = 1451.9:2208.1 standardized effect size=0.27;
Fig. 3c), suggesting thathigh-SDandhigh-PS scores are associatedwith
a distinct overall GM profile in children, but not mothers. As shown in
Fig. 3d, the high-SD / high-diversity GM children tend to have much
lower frequencies of breast milk feeding, which has been previously
associated with higher GM diversity36.

We next compared β-diversity between each sample dyadwithin
and between SD and PS groups using weighted UniFrac distance38

(Fig. 4). High-SD mothers had significantly more variable GMs than
those of low-SD mothers (two-sided, FDR-corrected Mann–Whitney
U-test P = 4.3 × 10−6, n1 = 595, n2 = 903, U = 307209, 95% confidence
interval=252585.6:284699.4, standardized effect size = 0.12; Supple-
mentary Data 1e). This effect was even stronger for the PS compar-
ison (two-sided FDR-corrected Mann–Whitney U-test P = 2.3 × 10−7,
n1 = 630, n2 = 496, U = 185377, 95% confidence interval =
145622.3:166857.7, standardized effect size = 0.16), with low-PS
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mothers having the most similar GMs out of the comparisons
(Fig. 4a). High-SD children had themost similar GM profiles (Fig. 4b),
which potentially relates to their increased α-diversity (Fig. 2b). Low-
SD children also have some overall similarity in their GM profiles, but
the low-SD and high-SD children GMs have little similarity to each
other compared to the similarity among low-SD and among high-SD
children (two-sided Wilcoxon rank sum test P < 10−15, n1 = 1505,
n2 = 903, U = 844197, 95% confidence interval = 647134.1:711880.9,
standardized effect size = 0.2 and P < 10−15, n1 = 595, n2 = 1505,
U = 278513, 95% confidence interval = 423196.2:472278.8, standar-
dized effect size = 0.29, respectively), consistent with clustering
results in Fig. 3c. The same is true for PS in the children, except the
within-group similarity for low-PS and high-PS was not significantly

different. In addition to weighted UniFrac distance (Supplementary
Fig. 4a), we also identified similar results using other metrics of β-
diversity including Bray-Curtis diversity (Supplementary Fig. 4b),
Aitchison distance (which showed similar trends but less significant
results; Supplementary Fig. 4c) and unweighted UniFrac distance
(which showed more diversity between high-PS samples in the chil-
dren, and lower distance for high-SD mothers; Supplementary
Fig. 4d), also indicating a robust statistical association regardless of
themetric used. Overall, the greater similarity betweenGMof low-SD
and low-PS mothers compared to high-SD and high-PS mothers
suggest distinct environmental exposures that either converge or
diverge maternal GM, highlighting the interface of SD/PS, environ-
ment and GM.

Table 1 | Participant characteristics at study entry for each of the primary comparisons of interest

Comparison Statistic All 16S samples MGS samples

All Social Disadvantage Psychosocial Stressors

Low High Low High
# Sample pairs (Mother and Child) 121 89 35 43 36 32

Maternal Mother delivery age (years) Min 18.8 19.3 25.7 19.3 21.5 19.3

Max 41.3 41.3 41.3 38.7 41.3 41.0

Average ± Std. dev. 29.8 ± 5.1 30.4 ± 5.2 33.2 ± 4.4 28.5 ± 5.2 32.0 ± 4.8 28.4 ± 5.4

P-value (T-test) 3.5×10−5 4.5×10−3

Race African American 52.1% 53.9% 2.9% 93.0% 36.1% 75.0%

Caucasian 44.6% 42.7% 91.4% 7.0% 61.1% 21.9%

Other 3.3% 3.4% 5.7% 0.0% 2.8% 3.1%

P-value (Chi square test) 6.1×10−15 1.3×10−3

Social Disadvantage
Score (SD)

Min −2.2 −2.2 −2.2 0.4 −2.2 −2.2

Max 1.3 1.3 −0.8 1.3 1.3 1.3

Average ± Std. dev. −0.24 ± 1.01 −0.23 ± 1.1 −1.48 ± 0.39 0.78 ± 0.26 −0.71 ± 1.11 0.31 ± 0.81

P-value (M-W U-test) 4.2×10-14 4.0×10−4

Psychosocial Stressors
Score (PS)

Min −1.7 −1.7 −1.7 −1.4 −1.7 0.34

Max 2.4 2.4 1.3 2.4 −0.73 2.4

Average ± Std. dev. −0.21 ± 0.86 −0.21 ± 0.98 −0.70 ±0.75 0.12 ± 0.91 −1.13 ± 0.25 0.92 ± 0.51

P-value (M-W U-test) 3.9×10−5 1.5×10−12

Children Birthweight
(g)

Min 2200 2200 2760 2200 2300 2200

Max 4665 4627 4370 4627 4370 4270

Average ± Std. dev. 3319 ± 538 3283 ± 556 3538 ± 459 3077 ± 548 3379 ± 555 3042 ± 494

P-value (T-test) 1.3×10−4 0.010

Gestational age (weeks) Min 37 37 37 37 37 37

Max 41 41 41 41 41 41

Average ± Std. dev. 39.0 ± 1.1 39.0 ± 1.1 39.5 ± 0.95 38.6 ± 1.03 39.1 ± 1.1 38.7 ± 1.1

P-value (M-W U-test) 7.2×10−4 0.24

Child sex Female 43.8% 40.4% 42.9% 39.5% 41.7% 46.9%

Male 56.2% 59.6% 57.1% 60.5% 58.3% 53.1%

P-value (Chi square test) 0.77 0.67

Route of deliverya NSVD 65.3% 64.0% 60.0% 67.4% 69.4% 59.4%

VAVD 6.6% 4.5% 5.7% 4.7% 2.8% 9.4%

Cesarean section 28.1% 31.5% 34.3% 27.9% 27.8% 31.3%

P-value (χ2) NSVD
vs Caes

0.52 0.61

P-value (χ2) VAVD vs
others

0.83 0.25

Breast milk feeding
frequency

≥50% 47.9% 46.1% 71.4% 23.3% 58.3% 31.3%

<50% 52.1% 53.9% 28.6% 76.7% 41.7% 68.8%

P-value (Chi square test) 2.1×10−5 0.025
aNSVD Normal spontaneous vaginal delivery, VAVD vacuum assisted vaginal delivery.
“Low” and “High” SD and PS scores are separated according to the distribution of the metadata as shown in Fig. 1. More complete metadata comparisons are available in Supplementary Data 1a,
normality test statistics in Supplementary B, T-test statistics are in Supplementary Data 1c, Chi-square test statistics in Supplementary Data 1d andMann–Whitney U-test statistics in Supplementary
Data 1e. All tests are two-sided when applicable.
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Species-level gut microbiome species and pathway reconstruc-
tions identify conserved and distinct features between mothers
and children
We performedWMS sequencing on 89 of the 121 mother–child dyads.
These pairs were selected based on the distribution of SD and PS
scores so that extremes of “high” and “low” samples were compared
(Fig. 1c). GM taxonomic profiles were generated from an average of
6Gb reads/sample using the Unified Human Gastrointestinal Genome
(UHGG42) database (Version 1), identifying 2,219 bacterial genomes
with detection in any sample, 1,274 of whichwere detected in at least 3
maternal samples or 3 child samples (Supplementary Fig. 5a). Twelve
genomes were detected frequently across all samples ( ≥ 40% of
mothers and children; Supplementary Fig. 5b), including six Bifido-
bacteria (B. breve, B. bifidum, B. catenulatum, B. pseudocatenulatum, B.
adolescentis, and B. infantis, the most frequently detected genome
across all samples; 69.7% of mothers and 89.9% of children; Supple-
mentary Fig. 6), two Bacteroides species (B. dorei and B. xylanisolvens),
two Faecalicatena species (F. gnavus and F. unclassified), Flavonifractor
plautii and Eggerthella lenta. Four of these species were also identified
as “core mother-infant shared species” in a previous WMS study43, but
the limited overlap may be a result of different analysis approach
(clade-specific marker genes from MetaPhlAn243,44 vs. mapping to
UHGG42) and/or difference in sequence depth of coverage.

We next quantified metabolic pathways45 (Supplementary Data 2)
to compare the functional potential of the GM communities (using
HUMAnN346–48, version 3). Of 468 pathways detected in any sample,
94% (438) were detected in at least 3 mother or 3 child GMs (Supple-
mentary Fig. 5c). In contrast to the genomes with relatively sparse
identification across samples, almost half (46.3%) of detected path-
ways were identified in ≥90% of samples in both mothers and children
(top right of the plot, Supplementary Fig. 5d), including 130 pathways
(27.8%) detected in all 178 samples (89 mothers and 89 children).
Despite the taxonomic differences between the GM of mothers and

children (31.7% shared genomes; Supplementary Fig. 5a), 87.2% of the
pathways were encoded by both mothers and children’s GMs (Sup-
plementary Fig. 5c), an observation reported previously and attributed
to shared “core” microbial community functions essential for all spe-
cies despite the distinct populations of species adapted to different
diets at different stages of life43.

Bacterial species including members of Lawsonibacter and
Bifidobacterium distinguish the GMs of mothers based on SD
and PS
To dissociate the impact of the highly inter-related SD and PS on the
maternal GM and to identify discriminatory bacterial taxa that are
strongly associated with either or both scores, we analyzed taxo-
nomic and pathway GM profiles using three statistical approaches.
First, we used supervised Random Forest (RF49) machine-learning to
(i) quantify the ability to accurately predict SD and PS classification
based on the mothers’ and the children’s GMs based on binomial
distribution tests (Fig. 5a; Supplementary Data 1h) and receiver
operating characteristic (ROC) curves (Fig. 5b) (ii) identify the
specific genomes and pathways that most strongly differentiate
between high and low SD and PS scores (Figs. 6 and 7; Table 2;
Supplementary Tables 1i and 1j; see Methods). Second, as a valida-
tion of RF results, we used linear discriminant analysis effect size
(LEfSe50) to test differential genome and pathway abundance by
calculating Kruskal–Wallis P-values and linear discriminant analysis
(LDA) effect sizes. Third, we performed differential abundance
testing with ANCOM-BC251 as an orthogonal approach to provide
additional confidence in specific results.

We identified a set of SD- and PS-discriminatory bacteria where
relative abundances classified mothers into low-SD or high-SD with
70.5% accuracy (P = 2.5 × 10−3, FDR-corrected binomial distribution
test, Supplementary Data 1h; AUC=0.794, P = 2.0 × 10−4, two-sided
Wilcoxon rank sum test calculated using the “roc.area” function in the
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“verification” R package, version 1.42; Fig. 5), and as low-PS or high-PS
with 72.1% accuracy (P = 8.2 × 10−4, FDR-corrected binomial distribu-
tion test; AUC=0.735, P = 1.6 × 10−4, two-sided Wilcoxon rank sum test
calculated using the “roc.area” function in the “verification”R package,
version 1.42). The top 25 strongest predictors of “high” vs. “low” SD
(Fig. 6a) and PS (Fig. 6b) scores in the mothers were identified
according to “mean decrease of accuracy” (MDA) scores for each
genome (the average decrease in accuracy by randomly permutating
the feature values in “out-of-bag” samples), with additional confidence
of differential abundance provided by LEfSe and ANCOM-BC2 analysis
shown for each taxa.

The species most associated with low-SD and low-PS in the
mothers tended to be detected with zero or very low abundance in the
high-SD or high-PS samples (Fig. 6). Low-SD mothers were character-
ized by increased abundance of many Firmicutes A genomes (Fig. 6a).
Lawsonibacter asaccharolyticus, a recently identified butyrate-
producing species52,53, was the top predictor of low-SD scores in the
mothers (RF MDA= 4.83%, LEfSe LDA effect size=2.7, LEfSe Kruskal-
Wallis FDR-corrected P = 1.8 × 10−5, ANCOM-BC2 FDR-corrected
P = 2.9 × 10−4). GM-derived butyrate has wide ranging beneficial effects
on health, including regulating fluid transport, reducing inflammation,
andmodulating intestinalmotility via mechanisms that include potent

regulation of gene expression54. However, L. asaccharolyticus has not
previously been independently associated with these beneficial
effects.

The predictors of high-SD and high-PS in the mothers were phy-
logenetically distinct, and enriched for Actinobacteria and Firmicutes
C, vs. mainly Firmicutes A, respectively. Genomes from four Bifido-
bacterium species (B. catenulatum, B. bifidum, B. breve, and B. infantis)
are among the seven top predictors of high-SD, and B. sp0022742445
and B. catenulatum were also predictors of high-PS. It is recognized
that Bifidobacteria in the human gut vary with age, and while quanti-
tatively some are particularly important in the infant GM, its presence
in older individuals is generally stable. In general, high abundance of
Bifidobacteria is related to gut homeostasis, health maintenance, and
protection, in part by producing potentially health-promoting meta-
bolites including short chain fatty acids, conjugated linoleic acid, and
bacteriocins, thus Bifidobacteria is postulated to improve health55.
However, qualitative and quantitative increase of Bifidobacteria are
associated with inflammatory disorders (such as diverticulitis, inflam-
matory bowel disease, and colorectal cancer56). Additionally, Bifido-
bacterium is one of three genera most consistently associated with
major depressive disorder (MDD) across studies57. While the specific
functional role of these high-SD associated Bifidobacteria species is
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Fig. 2 | GM sample diversity and composition comparisons with Social Dis-
advantage (SD) and Psychosocial Stressors (PS) scores, using two-sided
T-distribution correlation tests (no adjustment for multiple comparisons).
a SD scores and PD scores do not significantly correlate with GM α-diversity (Faith
phylogenetic diversity) in the 121 GM samples from the mothers (two-sided

T-statistic correlation test). b α-diversity in the children is significantly positively
correlated with SD and PS scores. Relative proportions of human milk feeding are
shown, to provide additional context for potential sources of differential diversity.
c β-diversity, measured by weighted UniFrac distance between the GM of each
mother-child dyad, is positively correlated with SD and PS scores.
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unclear, there is a striking increase in overall Bifidobacterial abun-
dance in high-SD mothers (Supplementary Fig. 6).

Bacteroides A mediterraneensis was the top predictor of low-PS in
mothers (RF MDA= 3.5%, LEfSe LDA effect size=2.5, LEfSe Kruskal-
Wallis FDR-corrected P = 3.8 × 10−4; Fig. 6b). In mice, stress exposure
reduces Bacteroides abundance in the GM58, and in humans, Bacter-
oides is one of five genera associated with healthy status vs. MDD
patients59. However, this is the first report of B. A mediterraneensis
specifically being associated with PS in a human cohort. Faecali-
bacterium and Prevotella were also negatively associated with MDD59,
and in our study Faecalibacterium sp. and Prevotella sp001275135were
the 6th and 9th strongest predictors of low-PS in the mothers(respec-
tively). S. thermophilus was also among the predictors of low-SD, with
zero or low abundance in high-PS and high-SD individuals.

Three species ofBlautiawere among the toppredictorsof high-PS
in the mothers, and none were associated with SD, suggesting a spe-
cific link with psychosocial stressors. In humans, Blautia is one of ten
genera associated with MDD59, and Blautia and Eggerthella (repre-
sented in the high-PSmothers by E. lenta) were significantly correlated
with PSS scores60. The latter study also identified Blautia and Bifido-
bacteria (represented in the high-PS mothers by B. catenulatum) as
being significantly associated with MDD60. However, the overall
abundance of Blautia in the GM was fairly consistent across mothers
(Supplementary Fig. 7), and only the three specific species identified in

Fig. 6b predicted PS, highlighting the importance of species-level
quantification provided by WMS.

Bacterial species including members of Enterobacter and Bifi-
dobacteriumdistinguish theGMsof childrenbasedonSDandPS
We identified discriminatory bacterial genomes that classified children
as low-SD and high-SD with 83.3% accuracy (P = 1.3 × 10−7; FDR-
corrected binomial distribution test; AUC=0.868, P = 2.9 × 10−9, two-
sided Wilcoxon rank sum test calculated using the “roc.area” function
in the “verification” R package, version 1.42; Fig. 5), and as low-PS and
high-PS with 67.6% accuracy (P = 1.3 × 10−7; FDR-corrected binomial
distribution test; AUC =0.721, P = 2.1 × 10−3, two-sided Wilcoxon rank
sum test calculated using the “roc.area” function in the “verification” R
package, version 1.42). The top 25 predictors of SD score (Fig. 7a) and
PS score (Fig. 7b) in the children were identified according to MDA
scores.

Among the strongest predictors of high-SD in children were
Enterobacter nimipressuralis (RF MDA= 5.94%, LEfSe LDA effect
size=3.4, LEfSe Kruskal-Wallis FDR-corrected P = 2.3 × 10−6; only
detected in one low-SD child) and Klebsiella pneumoniae (RF MDA=
3.09%, LEfSe LDA effect size=3.6, LEfSe Kruskal-Wallis FDR-corrected
P = 9.9 × 10−5), both proinflammatory lipopolysaccharide-expressing
Proteobacteria61. The strongest predictor of children with low-SD was
B. infantis, a species frequently used as a probiotic to diminish
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Fig. 3 | NMDS clustering based on 16S relative abundance of taxa in the GM,
showing major cluster separations according to Dirichlet Multinomial Mix-
tures (DMM) clustering. a Mothers and children group into two clusters, almost
entirely separating children (cluster 1, 94.5% of cluster members) from mothers
(cluster 2, 99.1% of cluster members). b Mother samples (N = 121 biologically
independent samples) grouped into two clusters (n1 = 61 and n2 = 61) but showed
no significant differences in social disadvantage (SD) or psychosocial stressors (PS;
two-sided Mann–Whitney U-tests with FDR adjustment; P =0.944 for each com-
parison). The range of the boxes extends from the 25th to the 75th percentiles, the

whiskers extend from the minimum to the maximum values, and the black hor-
izontal lines in the boxes indicate the mean values of the data. c Children samples
(N = 121 biologically independent samples) also grouped into two clusters (n1 = 61
and n2 = 61). Cluster 1 has significantly higher SD and PS scores (two-sided
Mann–WhitneyU-tests with FDR adjustment). The range of the boxes extends from
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values of the data. d The proportion of feedings with breast milk is shown on the
NMDS clustering.
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inflammation and associated with breastfeeding62. B. infantis repre-
sented anaverage of 28.3%of theGM in low-SD infants, but only 5.2% in
high-SD infants (RF MDA= 5.06%, LEfSe LDA effect size=5.1, LEfSe
Kruskal-Wallis FDR-corrected P =0.01; Supplementary Fig. 7). In heal-
thy term infants, low abundance of Bifidobacteriaceae has been linked
with systemic inflammation and immune dysregulation early in life63,
development of autoimmunity and early-onset type 1 diabetes64, as
well as neurodevelopment impairment in preterm infants65. The
microbial differences found in our infants are partly related to varia-
tion in breast milk exposure, which is diminished in infants living in
high SD/PS (Figs. 2b, c). Beyond breast milk, other lifestyle differences
have also been shown to have important impacts on early life GM
assembly that persist, intergenerationally and well beyond infancy66.
This highlights the biologic conversion of social disadvantage, in this
case linked to breast milk feeding, with the GM and subsequent
potential impact on long term health outcomes.

There was an overlap of the predictors for low-SD and low-PS in
the children, includingVeillonella parvula A and severalCollinsella spp.
Veillonella is a signature genus of the 4month microbiome, and with
Collinsellawas found in the breast-fed GM, indicating reduced oxygen
concentration and increased production and utilization of lactic acid,
which is specific for a milk dominated diet67. The high-SD and high-PS-
discriminating bacteria were enriched for a broad range of evolutio-
narily distinct Firmicutes species (Fig. 7). The best high-PS predictors
included F. gnavus, a pathobiont associated with inflammatory bowel
disease68 and Sutterella sp. Sutterella species are prevalent commen-
sals in the human GM and have mild-proinflammatory properties69.

Metabolic pathways associated with SD and PS include carbo-
hydrate degradation and L-glutamate and L-glutamine synthesis
The same statistical approaches (Supplementary Data 1j) were used to
identify SD- and PS-discriminatory metabolic pathways (using a cura-
ted database of metabolic pathways, MetaCyc45). Based on metabolic

pathway profiles (Supplementary Data 2), RF classified mothers as
high- and low-SD with 65.4% accuracy (P =0.05; FDR-corrected bino-
mial distribution test; Supplementary Data 1h) and as high- and low-PS
with 60.3% accuracy (P = 0.09; FDR-corrected binomial distribution
test), and classified children as high- and low-SD with 80.8% accuracy
(P = 5.2 × 10−7; FDR-corrected binomial distribution test) and as high-
and low-PS with 61.8% accuracy (P =0.056; FDR-corrected binomial
distribution test). Compared to genomic abundance data, pathway
abundanceRF accuracyof classificationwas lower for SD andPS scores
because it has fewer total features and greater conservation of
detection across samples (Supplementary Fig. 5). However, the MDA
values from the RF (using the top 25 pathways) combinedwith LEfSe P-
values still provided a means to identify the metagenomic pathways
most associated with high SD and PS (Table 2).

The three pathways with the highest predictive value for high-SD
in mothers (Table 2) related to carbohydrate degradation (sucrose
degradation IV, glycogen degradation I, starch degradation III), which
appears to relate to the accompanying abundance of strict anaerobic
Bifidobacterium species that are rich in carbohydrate metabolism
pathways70, with B. bifidum and B. infantis contributing 62.8% of the
total abundance of sucrose degradation IV and 56.5% of the total
abundance to glycogen degradation I (Fig. 8a). These taxa also con-
tribute to the enriched pathways UDP-N-acetyl-D-glucosamine bio-
synthesis I and Superpathway of L-threonine biosynthesis, further
highlighting their importance not only to the overall SD-defining
taxonomic profile, but also to the metabolic potential of the GM. The
“myo-, chiro- and scyllo-inositol degradation”pathway (PWY-7237)was
among the most strongly associated with high-PS in mothers (RF
MDA= 2.57%, LEfSe LDA effect size=1.5, LEfSe Kruskal-Wallis FDR-cor-
rected P = 7.4 × 10−3). Myo-inositol and chiro-inositol degradation by
the GM contributes to inositol deficiency71, which includes metabolic
disorders involved with insulin function71 and MDDwhenmyo-inositol
is deficient in the prefrontal cortex72.
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Fig. 4 | Comparisons of β-diversity between sample sets based on high-vs-low
SD and PS, quantified byweightedUniFrac distance between sample pairs and
two-sided FDR-corrected Mann–Whitney U-tests to test for significant differ-
ences. a Comparisons of within- and between-group β-diversity of the GM for
mothers with low-SD (n = 35), high-SD (n = 43), low-PS (n = 36) and high-PS (n = 32),
all representing biologically independent samples. b Comparisons of within- and
between-group GM β-diversity in children with high-SD, low-SD, high-PS and low-
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the number of unique biologically independent sample pairs in each group
(n = 903 low-SD vs low-SD, n = 1505 high-SD vs low-SD, n = 595 high-SD vs high-SD,
n = 496 low-PS vs low-PS,n = 1152high-PS vs low-PS,n = 630high-PS vs high-PS).On
the violin plots, thick black lines indicate the median values, white dashed lines
indicate the quartiles of the data range, thewidth of the shadedareas represent the
proportion of data points located at the given weighted UniFrac distance, and the
height of the shaded areas spans from the minimum to the maximum value.

Article https://doi.org/10.1038/s41467-023-41421-4

Nature Communications |         (2023) 14:5824 7



The top predictive pathways of SD in children (Table 2) included
L-glutamate and L-glutamine synthesis (PWY-5505) as being second-
most strongly associatedwith high-SD in the children (RFMDA= 5.01%,
LEfSe LDA effect size=1.2, LEfSe Kruskal-Wallis FDR-corrected
P = 9.5 × 10−6), which was previously associated with obesity and visc-
eral fat accumulation73. Here, L-glutamine biosynthesis was also asso-
ciated with high-SD in both mothers and children. In supplementation
studies of the GM, glutamine reduces the ratio of Firmicutes to Bac-
teroidetes and bacterial overgrowth or bacterial translocation and
increases the density of secretory immunoglobulin A (IgA) and IgA+
cells in the intestinal lumen74. The top metabolic pathway associated
with high SD in children relates to tryptophan biosynthesis. Trypto-
phan is the sole precursor of the neurotransmitter serotonin as well as
other active metabolites. Dysregulation of tryptophan metabolism is
emerging as having a potential role in neurologic function and psy-
chiatric disorders75–77. The facultative anaerobe Klebsiella pneumonia
(the fourth-ranked taxa associatedwith high SD in the children; Fig. 7a)
was responsible for (i) 30% of the total abundance of the top pathway

(pyrimidine deoxyribonucleotides biosynthesis fromCTP) and (ii) 33%
of the total abundance of the fourth-ranked pathway, superpathway of
glycerol degradation to 1,3-propanediol, a function first described in
and well-studied in Klebsiella pneumonia78, although the function of
this pathway in the gut microbiome is unclear (Fig. 8b).

Bacterial species discrimination based on maternal circulating
cytokines
The relationship between inflammation and the GM was examined by
measuring maternal circulating cytokines IL-6, IL-8, IL-10, and TNFα at
the third trimester. For all circulating cytokines, the average con-
centrations were not significantly different between the low-SD and
high-SD participants or between the low-PS and high-PS groups
(Supplementary Data 1a). The only circulating cytokine with any sig-
nificant overall correlationwith SD or PSwas IL-8 (r = 0.252, degrees of
freedom=81, P = 0.022, effect size statistic=2.34, 95% confidence
interval = −1.98:1.98, two-sided-test; Supplementary Fig. 8, Supple-
mentary Data 1f). The same RF approach used to compare high-vs-low

b

a

Fig. 5 | The Random Forest (RF) classification accuracy (low-SD vs high-SD and
low-PS vs high-PS, out-of-bag error) based on relative UHGG genome abun-
dance in themothers and children. aOverall classification accuracy, with P-values
indicating significance based on FDR-corrected binomial distribution tests

(compared to random sample assignment). b For each of the four classification
tests, receiver operating characteristic (ROC) curves are shown based on RF
models, with the area under the curve (AUC) scores and associated two-sided
Wilcoxon rank sum test results for each ROC curve indicated.
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SD and PS was used to identify the classification accuracy of high-vs-
low circulating cytokines, in order to test if the metagenomic profiles
of children ormothers are distinct between cohorts based on cytokine
levels. After dividing groups using the same approach (“high” and
“low” defined as being greater than or less than the average value + 0.5
and −0.5 standard deviations, respectively), the sample sizes were
substantially smaller for the cytokine comparisons (IL-6, N = 45; IL-8,
N = 50; IL-10, N = 51, TNF-α, N = 55), compared to SD (N = 77) and PS
(N = 68). This is due to (i) The participants not being selected based on
the extremes of cytokine values, as they were for SD and PS, resulting
in most samples have close to average values (see Supplementary

Fig. 8) and (ii) Cytokine values not being available for six of the
participants.

Performing the RF comparison for cytokines using genomes and
pathways, only the children’s genomic profiles were significantly pre-
dictive of only the high-vs-low IL-6 status in the mother (66.7% accu-
racy, P =0.029 by FDR-corrected binomial distribution test);
Supplementary Table 1; Statistical results for this comparison are in
Supplementary Table SI. In preclinical models, IL-6 is centrally
important in altering fetal brain development in maternal immune
activationmodels, where placental inflammatory signals are relayed to
the fetal brain79–81. In this cohort, the top three genomes associated

Phylum Genus / Species

Bacteroidota Bacteroides A mediterraneensis
Firmicutes A UBA1191 sp.
Firmicutes A Agathobacter sp000434275
Firmicutes A UBA7160 sp.
Bacteroidota Alistipes sp.
Firmicutes A Faecalibacterium sp.
Firmicutes Streptococcus thermophilus
Firmicutes A Anaerostipes sp900066705
Bacteroidota Prevotella sp001275135
Firmicutes A Blautia A sp900066335
Actinobacteriota Bifidobacterium sp002742445
Firmicutes A Faecalibacterium sp.
Firmicutes A Faecalibacterium prausnitzii C
Firmicutes A Dorea formicigenerans
Firmicutes A Faecalicatena faecis
Firmicutes A Dorea longicatena B
Firmicutes A Blautia A sp.
Firmicutes A Faecalibacterium sp.
Actinobacteriota Bifidobacterium catenulatum
Firmicutes A Eubacterium I ramulus
Firmicutes A Blautia A sp.
Firmicutes Erysipelatoclostridium sp000752095
Firmicutes A Faecalibacterium prausnitzii H
Firmicutes A Faecalicatena sp.
Actinobacteriota Eggerthella lenta

-1 1
Z score of relative abundance 

No detection RF Mean decrease 
in accuracy (%)

- 2.5

- 1.5

- 0.5

- -0.5

- -1.5

P
sychosocial 

S
tressors score

Average

Low-PS High-PS

Higher 
with 
high PS

Higher 
with 
low PS

0 1 2 3 4 0 1 2 3
-Log FDR-corrected 

P value (LEfSe)

0.1% 1% 10%
Relative abundance 
(% of microbiome)

ANCOM-
BC2 FDR
P value

8.5E-03

Phylum Genus / Species

Firmicutes A Lawsonibacter asaccharolyticus
Firmicutes A Lawsonibacter sp000177015
Firmicutes Streptococcus thermophilus
Bacteroidota Bacteroides A plebeius
Firmicutes A Eubacterium G sp000432355
Firmicutes A Monoglobus pectinilyticus
Firmicutes A Eubacterium F sp.
Firmicutes A Acetatifactor sp900066565
Bacteroidota Bacteroides A coprocola
Bacteroidota Alistipes obesi
Firmicutes A Coprococcus A sp.
Firmicutes A UBA11774 sp003507655
Bacteroidota Bacteroides cutis
Actinobacteriota Adlercreutzia sp.
Firmicutes A Ruminiclostridium E siraeum
Firmicutes A Dorea sp900066555
Actinobacteriota Adlercreutzia equolifaciens
Actinobacteriota Bifidobacterium bifidum
Actinobacteriota Bifidobacterium infantis
Desulfobacterota A Desulfovibrio sp900319575
Actinobacteriota Bifidobacterium breve
Firmicutes A Faecalibacterium sp.
Firmicutes C Megasphaera sp001546855
Actinobacteriota Bifidobacterium catenulatum
Firmicutes C Acidaminococcus intestini

- 1.5

- 0.5

- -0.5

- -1.5

S
ocial 

D
isadvantage score

Average

-1 1
Z score of relative abundance 

No detection

Higher 
with low SD

RF Mean decrease 
in accuracy (%)

-Log FDR-corrected 
P value (LEfSe)

0.1% 1% 10%
Relative abundance 
(% of microbiome)

Higher 
with high SD

Low-SD High-SD

0 1 2 3 4 5 0 1 2 3 4 ANCOM-
BC2 FDR
P value

2.9E-04
0.042

5.9E-03

0.017
0.015

0.042

0.042
7.3E-03

1.0E-03
0.038

1.0E-03
0.038

7.3E-03
2.9E-04

a Mothers
Social Disadvantage scores

b Mothers
Psychosocial Stressors scores

Fig. 6 | WMS genome differential abundance in the mothers, based on com-
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with low IL-6 are (i) B. bifidum (RF MDA=4.48, LEfSe LDA effect
size=4.44, LEfSe Kruskal-Wallis FDR-corrected P = 0.044, ANCOM-BC2
FDR-adjusted P =0.037), which was the top genome associated with
high-SD in themothers (Fig. 6), (ii) Collinsella sp. (RFMDA= 3.46, LEfSe
LDA effect size=2.52, LEfSe Kruskal-Wallis FDR-corrected P = 0.044,
ANCOM-BC2 FDR-adjusted P =0.045), which was strongly associated
with low-PS in the children (the top two genomes and four of the top
seven genomes in that comparison; Fig. 7), and (iii) B. infantis (RF
MDA= 3.29, LEfSe LDA effect size=4.70, LEfSe Kruskal-Wallis FDR-
corrected P = 0.044, ANCOM-BC2 FDR-adjusted P =0.032), associated
with low-SD in the children and high-SD in the mothers.

Although the overall RF model for the pathways did not show
significant predictive accuracy in any comparison (Supplementary
Table 1), the same pathway identification approach shown in Table 2
wasused to identify the toppathways associatedwith high and low IL-6
in the children (results in Supplementary Data 1j). The top child
pathways associated with low maternal IL-6 include glycogen degra-
dation I (GLYCOCAT-PWY; MDA= 1.71, LEfSe LDA effect size=1.90,
LEfSe Kruskal-Wallis FDR-corrected P =0.018), which was among the
top associated with high-SD mothers (Fig. 6) and came primarily from
B. bifidum andB. infantis (Fig. 8), as well as the related pathwayglucose
and glucose-1-phosphate degradation (GLUCOSE1PMETAB-PWY, RF
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Fig. 7 | WMS genome differential abundance in the children, based on com-
parisons of high-vs-low Social Disadvantage (SD) scores (N = 35 and N = 41
biologically independent samples, respectively) and high-vs-low Psychosocial
Stressors (PS) scores (N = 36 and N = 32 biologically independent samples,
respectively). a Taxonomy and relative abundance per sample for genomes with
the highest predictive value for SD in the random forest (RF) model based on the
GMs from the children (ranked by mean decrease in accuracy of the RF model;
MDA). Also shown are -Log of the Kruskal-Wallis test FDR-corrected P-values from
LEfSe (when effect size ≥ 2), FDR-corrected P-values from ANCOM-BC2 and the

relative abundance of the taxa when present. On violin plots, thick black lines
indicate median values, dashed black lines indicate data range quartiles, shaded
area heights represent the proportion of data points for the abundance values, and
the width of shaded areas spans from the minimum to the maximum value. Violin
plots represent data from all samples in the comparison. b Taxonomy, relative
abundance and differential abundance statistics for the genomes with the highest
predictive value for PS in the RF model based on the GMs from the children. Data
visualization and statistics are the same as for a.
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Table 2 | Metabolic pathways differential abundance in each of the RF comparisons

Comparison MetaCyc pathway ID Average abundance (CPM) Random Forest
MDA (%)

LEfSe results

Low
SD/PS

High
SD/PS

Direction LDA
Effect size

K-W test
FDR value

Mother -
Social
Disadvantage (SD)

PWY-7198: pyrimidine deoxyribonucleotides de novo
biosynthesis IV

61.9 100.9 ↑ 5.38 1.30 9.6×10−5

PWY-5384: sucrose degradation IV (sucrose
phosphorylase)

31.2 61.8 ↑ 3.78 1.19 5.7×10−4

PWY-6549: L-glutamine biosynthesis III 35.2 60.1 ↑ 3.65 1.13 9.6×10−5

GLYCOCAT-PWY: glycogen degradation I 38.7 72.7 ↑ 3.01 1.21 4.7×10−3

UDPNAGSYN-PWY: UDP-N-acetyl-D-glucosamine bio-
synthesis I

172.4 208.8 ↑ 2.91 1.27 0.018

THRESYN-PWY: superpathway of L-threonine
biosynthesis

313.6 339.2 ↑ 2.67 1.17 0.046

PWY-241: C4photosynthetic carbonassimilationcycle,
NADP-ME type

45.8 84.0 ↑ 2.20 1.30 5.9×10−4

PWY-6901: superpathway of glucose and xylose
degradation

106.1 138.2 ↑ 2.04 1.21 1.5×10−3

PWY-5913: partial TCA cycle (obligate autotrophs) 42.4 85.9 ↑ 1.86 1.35 4.7×10−4

PWY-622: starch biosynthesis 26.9 64.7 ↑ 1.82 1.28 5.7×10−4

PWY-6731: starch degradation III 22.3 42.3 ↑ 1.73 1.00 1.9×10−3

NAGLIPASYN-PWY: lipid IVA biosynthesis (E. coli) 80.9 58.2 ↓ 3.04 1.10 0.022

Mother -
Psychological
Stressors (PS)

ANAGLYCOLYSIS-PWY: glycolysis III (from glucose) 392.8 427.7 ↑ 4.52 1.27 3.2×10−3

GLYCOGENSYNTH-PWY: glycogen biosynthesis I
(ADP-D-Glucose)

297.0 382.7 ↑ 4.16 1.60 2.6×10−3

RHAMCAT-PWY: L-rhamnose degradation I 140.9 168.7 ↑ 3.48 1.22 8.9×10−3

VALSYN-PWY: L-valine biosynthesis 493.6 540.3 ↑ 2.74 1.36 8.9×10−3

THISYNARA-PWY: superpathway of thiamine dipho-
sphate biosyn. III

214.5 242.2 ↑ 2.69 1.14 0.017

PWY-7237: myo-, chiro- and scyllo-inositol degradation 225.9 285.6 ↑ 2.57 1.49 7.4×10−3

PWY-6731: starch degradation III 24.0 42.9 ↑ 2.56 1.01 8.9×10−3

PWY-7357: thiamine phosphate formation from pyr-
ithiamine &oxythiamine

283.5 333.4 ↑ 2.41 1.38 5.5×10−3

NONOXIPENT-PWY: pentose phosphate pathway (non-
oxidative branch) I

252.0 300.2 ↑ 2.33 1.36 9.8×10−3

PWY-622: starch biosynthesis 34.1 61.1 ↑ 2.12 1.14 8.9×10−3

PWY-7115: C4 photosynthetic carbon assimilation
cycle, NAD-ME type

43.4 63.2 ↑ 2.02 1.01 0.022

DTDPRHAMSYN-PWY: dTDP-β-L-rhamnose
biosynthesis

539.2 574.2 ↑ 2.01 1.26 0.026

COMPLETE-ARO-PWY: superpathway of aromatic
amino acid biosynthesis

435.5 470.6 ↑ 1.93 1.22 8.9×10−3

GLUTORN-PWY: L-ornithine biosynthesis I 307.3 359.2 ↑ 1.91 1.38 8.9×10−3

Child -
Psychological
Stressors (PS)

PWY-7210: pyrimidine deoxyribonucleotides biosynth-
esis from CTP

29.2 78.8 ↑ 5.08 1.42 6.8×10−4

PWY−5505: L-glutamate and L-glutamine biosynthesis 9.3 38.7 ↑ 5.01 1.20 9.5×10−6

PWY-6897: thiamine diphosphate salvage II 167.3 223.2 ↑ 4.01 1.43 3.8×10−4

GOLPDLCAT-PWY: superpath. of glycerol degradation
to 1,3-propanediol

35.1 58.2 ↑ 3.48 1.00 1.7×10−3

PWY0-1296: purine ribonucleosides degradation 205.7 255.8 ↑ 3.46 1.39 0.032

PWY-6549: L-glutamine biosynthesis III 33.9 58.5 ↑ 3.16 1.12 3.8×10−4

PWY-6470: peptidoglycan biosynthesis V (β-lactam
resistance)

26.6 74.8 ↑ 3.03 1.34 3.8×10−4

PWY-6124: inosine-5’-phosphate biosynthesis II 275.7 341.1 ↑ 2.73 1.54 6.8×10−4

PWY-6700: queuosine biosynthesis I (de novo) 207.5 292.3 ↑ 2.72 1.61 8.1×10−4

TEICHOICACID-PWY: poly(glycerol phosphate) wall
teichoic acid biosyn.

21.8 48.9 ↑ 2.59 1.15 5.1×10−4

PWY-1042: glycolysis IV 396.4 483.2 ↑ 2.54 1.60 1.7×10−3

PWY0−1479: tRNA processing 187.7 132.5 ↓ 3.74 1.46 1.8×10−3

Child -
Social Disadvantage
(SD)

TRPSYN-PWY: L-tryptophan biosynthesis 266.0 321.2 ↑ 3.39 1.43 0.015

PWY-6549: L-glutamine biosynthesis III 29.2 56.9 ↑ 3.25 1.15 6.5×10−4

PWY-241: C4photosynthetic carbonassimilationcycle,
NADP-ME type

83.4 119.1 ↑ 2.48 1.26 0.015

ANAEROFRUCAT-PWY: homolactic fermentation 281.5 331.0 ↑ 2.43 1.39 0.015

PWY−5505: L-glutamate and L-glutamine biosynthesis 13.5 37.6 ↑ 2.37 1.13 7.4×10−4
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MDA= 2.53, LEfSe LDA effect size=1.87, LEfSe Kruskal-Wallis FDR-cor-
rected P =0.03). Taken together, these genome and pathway results
indicate that the child genomes and pathways distinguishing low
maternal IL-6 overlap considerably with the genomes and pathways
identifying high-SD in the mothers, although there is no significant
correlation between IL-6 and SD (Supplementary Fig. 8).

B. adolescentiswas the top associated taxa with highmaternal IL-6
in the children (RF MDA= 3.99, LEfSe LDA effect size=3.36, LEfSe
Kruskal-Wallis FDR-corrected P =0.038, not significant by ANCOM-
BC2), followed by B. pseudocatenulatum (RF MDA= 3.81; Not

significant by LEfSe or ANCOM-BC2). Both of these genomes were
among the top four predictive of high-PS in the children. The third-
ranked genome was Enterobacter himalayensis (RF MDA= 3.59, LEfSe
LDA effect size=3.04, LEfSe Kruskal-Wallis FDR-corrected P = 0.032,
not significant by ANCOM-BC2), which was associated with high-SD in
themothers (Fig. 6). Additionally, sixBlautia genomeswere among the
top 13 associatedwith high-IL-6, a genuswhichwas strongly associated
with high-PS in the mothers (Fig. 6). Among the 7 pathways sig-
nificantly associated with high-IL-6 children were (i) myo-, chiro- and
scyllo-inositol degradation (PWY-7237; MDA= 3.6, LEfSe LDA effect

Table 2 (continued) | Metabolic pathways differential abundance in each of the RF comparisons

Comparison MetaCyc pathway ID Average abundance (CPM) Random Forest
MDA (%)

LEfSe results

Low
SD/PS

High
SD/PS

Direction LDA
Effect size

K-W test
FDR value

PANTOSYN-PWY: superpathway of coenzyme A bio-
synthesis I (bacteria)

230.8 281.5 ↑ 2.34 1.43 0.024

PWY−4981: L-proline biosynthesis II (from arginine) 68.9 115.6 ↑ 2.10 1.42 0.015

PWY-6731: starch degradation III 59.1 86.1 ↑ 1.99 1.16 0.034

FUC-RHAMCAT-PWY: superpathway of fucose and
rhamnose degradation

76.4 53.8 ↓ 2.36 1.08 0.024

“↑” indicates pathways higher with high Social Disadvantage (SD) / Psychosocial Stressors (PS), and “↓” indicates pathways higher with low SD/PS.
Average abundance and association (high or low) are shown for the top 25 pathwayswith the highest predictive value in the RFmodel (ranked bymean decrease in accuracy of the RFmodel; MDA),
and with LEfSe LDA effect size ≥ 1 and FDR-corrected Kruskal–Wallis test ≤0.05.

a

b

Fig. 8 | Networks depicting the relative contribution of high-social dis-
advantage (SD)-associated genomes to high-SD associated pathways. a Edges
connect high-SD genomes in the mothers (yellow, from Fig. 6) to high-SD path-
ways in the mothers (purple, from Table 2). b Edges connect high-SD genomes in

the children (yellow, from Fig. 7) to high-SD pathways in the children (purple, from
Table 2). Node sizes indicate themean decrease in accuracy (MDA) values from the
random forest analysis, and edge thickness anddarkness indicate the proportion of
reads that each genome contributes to the pathways.
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size=1.81, LEfSe Kruskal-Wallis FDR-corrected P = 3.6 × 10−4), whichwas
associatedwith high-PSmothers, (ii) L-glutaminebiosynthesis III (PWY-
6549: L-glutamine biosynthesis III; MDA= 2.28, LEfSe LDA effect
size=1.26, LEfSeKruskal-Wallis FDR-corrected P = 3.3 × 10−3), associated
with high-SD mothers and children and high-PS children and (iii)
thiamine diphosphate salvage II (PWY-6897; MDA= 2.47, LEfSe LDA =
1.38, LEfSeKruskal-Wallis FDR-correctedP = 2.7× 10−3), associatedwith
high-PS children. Together, these results indicate that many of the
same taxa and pathways that distinguish high maternal IL-6 from the
child GM were also predictive of high-PS in the mothers and children.

The human GM modulates inflammatory cytokine production8,82

and has been linked to chronic inflammatory disorders6. Elevated IL-6
concentrations have been linked to specific GM profiles in disease
states among adults83,84 and recently to cerebellar neuropathology
with loss of Purkinje cells when elevated during pregnancy in animal
models80,81. Here, we have identified that many of the genomes and
pathways significantly associated with low and high maternal IL-6
intersect with those associated with high-SD in the mothers and high-
PS in the mothers and children (respectively).

In conclusion, from our prospectively assembled eLABE cohort,
we identified a subset of 121 mother infant dyads (Supplementary
Fig. 1) that enabled us to quantify, for the first time, the association of
exposure with both SD and PS on GM structure and function for
mothers and their infants. This is the first human study to separate the
association of SD from PS on the GM, demonstrating distinct tax-
onomy and functions consistent with divergent underlying drivers for
each. This is in agreement with preclinical data demonstrating differ-
ent causal organisms involved in stress responses related to the
hypothalamic pituitary axis85 compared to environmental exposures
like diet86. The GMsofmothers and infants classified as “high” (case) or
“low” (control) SD and PS show distinct discriminatory taxonomic and
metabolic features that accurately ‘predict’ maternal prenatal SD and
PS status, with SD having greater predictive accuracy (81.4% and 90.7%
in mothers and children respectively) than PS (68.8% and 62.5%,
respectively). Mothers with high-SD/high-PS had highly variable
microbiomes compared to low-SD/low-PS mothers, reflecting greater
permutations from environmental influences. The distinct taxonomic
and functional predictors for SD compared to PS indicate unique
underlying mechanisms driving these relationships. Furthermore, we
identified amodest but significant relationship between the infant GM
and prenatal circulating IL-6 concentrations in mothers (66.7% accu-
racy). The discriminating taxa for IL-6 were distinct from those for SD/
PS, indicating theremay be different pathways contributing to chronic
inflammation than those identified in the SD/PS results (Table 2). We
remain cautious in interpreting these results however, related to lim-
ited maternal serum values (n = 45–55 samples/group) for these cyto-
kines (methods).

Our work highlights the previously reported negative relation-
ships between socioeconomic status and breastfeeding rates with a
subsequent impact on the neonatal GM87,88. The resulting GMof highly
SD infants at 4months have greater diversity and a relative paucity of
strict anaerobes (Bifidobacterium, Veillonella and Collinsella sp.)
reflective of formula feeding. Evidence is accumulating that these early
microbial patterns contribute to select immune mediated long term
health outcomes over-represented in SD populations including
asthma89, and diabetes64. This highlights the biologic conversion of
social disadvantage, in this case linked to breast milk feeding, with the
GM and subsequent potential impact on long term health outcomes.
These results highlight the need for health policy interventions aimed
at increasing breastfeeding resources for mothers with high SD12.

Our findings should be interpreted in the context of the strengths
but also limitations of the study. The findings are associations, and we
cannot infer causality. Nonetheless, we identified species-level taxa
and metabolic pathways through WMS in human cohort, which forms
the basis to testmechanistic causation in preclinicalmodels, which can

then be brought back to humans. The population we studied is from a
circumscribed demographic region but contains a broad range of
socioeconomic backgrounds. Results from cytokine analysis was lim-
ited by smaller samples size (N = 45–55) and require validation in
additional cohorts.We did not examine the role of race because of the
collinearity of race and SD, with no additional contribution of race in
the model beyond that found with SD alone.

The results identify unique features of the maternal and infant
GMs in relation to SD and PS at the time of sampling. Longitudinal
studies are needed to determine the stability of these GM signatures
from early life to early childhood and will enable elucidating possible
enduring effects of socioeconomic status and mental health determi-
nants onGMhealth and stability.More critically, information on causal
pathways triggered or sustained by the GM that affect child health and
development could lead tonewdiagnostic biomarkers and therapeutic
interventions. The potential malleability of the GM leaves room for
optimism that unfavorable neurodevelopment outcomesmight not be
inevitable in children to mothers who are experiencing high levels of
SD and PS.

Methods
Study design, clinical cohort, and ethics statement
This prospective case-control study draws from the Early Life
Adversity and Biological Embedding (eLABE30) study, with pregnant
women identified from the March of Dimes (MOD) Prematurity
Research Center at Washington University in St. Louis. Pregnant
women (N = 395) were recruited between 2017–2020 and delivered
at Barnes Jewish Hospital in St. Louis31 and were recruited by study
personnel during clinic visits. One clinic primarily serves patients
with public health insurance, and the other primarily serves patients
with private health insurance. Eligibility for MOD enrollment was
not restrictive, and included plans to deliver at Barnes Jewish Hos-
pital, a minimum age of 18 years, and English speaking. Exclusion
criteria includedmultiple gestations, congenital malformations and
infections, premature birth (<37 weeks gestation), maternal alcohol
or drug use during pregnancy (excluding tobacco, marijuana), and
maternal steroid exposure (excluding inhaled). Race and ethnicity
were based on maternal self reporting extracted from the medical
record. A priori eligibility for this study at 4months included if
mothers had delivered at ≥37 weeks and infants had reached
4months corrected age (N = 355), with both maternal 3rd trimester
(T3) and infant 4months stool samples available (Supplementary
Fig. 1). Mothers had no record of recent antibiotic usage as of the
sampling point at T3, and just four of the children had received
antibiotics before the 4month sampling timepoint (two receiving
amoxicillin within the first 4 weeks, one receiving azithromycin at
26 days, and one continuously receiving PCN-V; Supplementary
Data 2). Women facing social disadvantage were oversampled by
increasing recruitment for clinics serving low income women, in
order to facilitate the intended comparisons based on social dis-
advantage and psychological stressors. It is possible that the criteria
for English speaking only applicants, limits generalizability and
increases bias toward a higher Socioeconomic status. Social Dis-
advantage however was evenly spread across the cohort (Fig. 1). The
requirement of providing a third trimester stool sample may also
bias toward a higher socioeconomic status with resources to
retrieve and return samples. We attempted to mitigate this with the
use of a courier system that retrieved home produced stool samples
for all mothers, at all times, to accommodate variable work hours.

All relevant ethical regulations were followed, and the study was
approved by the Washington University in St. Louis Institutional
Review Board in the Human Research Protection Office (protocol
number 201703145), with informed consent obtained from themother
for themselves and their infants. Participants were compensated
$20.00 for the stool samples and $25.00 for the blood draws. The
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study was performed in accordance with Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE) guidelines90.
Detailed metadata for all samples are provided in Supplementary
Data 2 and are summarized for each comparison in Supplementary
Data 1a.

Maternal measures
At each trimester of pregnancy, measures of maternal depression,
experiences of stress, as well as demographic and clinical information
including insurance, education, address, household composition, pre-
pregnancy BMI, and route of delivery were obtained from participants
or extracted from themedical recordby trained staff. Sexwasbasedon
self-reporting, with all mothers reporting as female and the mothers
reporting on the behalf of the children.

Components of the two latent factors maternal SD and maternal
PS as previously described30. Briefly, the components of each latent
factor included:

Maternal SD: Insurance status verified in the 3rd trimester from the
medical record and maternal self report; Income to Needs Ratio in
each trimester basedon self-reported family incomeandhoushold size
(1.0 being the poverty line for the U.S.); highest self-reportedmaternal
educational level; Area Deprivation Index, a nationalmultidimensional
geotracking method based on census block data providing percentile
rankings of neighborhood disadvantage status91; and maternal nutri-
tion over the past year categorized using the validated Healthy Eating
Index (using National Cancer Institute. The Healthy Eating Index—
Population Ratio Method. Updated December 14, 202192) obtained
using the Diet History Questionnaire (DHQII).

Maternal Psychosocial Stressors: The Edinburgh Postnatal
Depression Scale (EPDS)93 completed in each trimester; Perceived
Stress scale (PSS)94 completed in each trimester and averaged over
trimesters; and a one-time lifetime STRAIN survey95, a comprehensive
measure of lifetime stressful and traumatic life events. Experiences of
discrimination based on race were assessed using the Everyday Dis-
crimination Scale96.

Infant measures
Gestational age was determined by the best obstetric estimate using
last menstrual period or earliest ultrasound dating. Birthweight and
route of delivery were extracted from the electronic medical record
delivery note. Breastfeeding data were collected by parental report at
the time of home stool sample collection and based on the Center for
Disease Control Infant Feeding Practices II study food frequency
checklist data97,98. The sex of each child is provided in Supplemen-
tary Data 2.

Biological specimen collection and processing
Maternal serum samples were collected in each trimester, processed
within 12 h of collection, and stored at −80oC (details in31). Sponta-
neously generated stool (feces) from mothers and infants were col-
lected from home using a community-based courier system available
24 h per day and stored at−80oC as previously described98. All samples
were processed in the laboratory of Dr. Phillip Tarr, where DNA was
extracted from stools that had been frozen at −80 °C since acquisition
using the Qiagen (Hilden, Germany) QIAamp Power Fecal Pro DNA Kit
(catalog #51804), and the automated QIAcube99 (Qiagen). Briefly,
100mg of stool was suspended in 1.2mL of stool lysis buffer in a 2mL
screw cap tube containing a mix of 6–8 zirconium beads (2.3mm, RPI
Corporation, Mount Prospect, IL) and 0·1mL of acid washed glass
beads (0.4–0.6mm, Sigma, MO). This suspension was homogenized
by bead beating (FastPrep 24, MP Biomedical, Santa Ana, CA) (6.0 set
point, 2min), and centrifuged (14,000 × g, 3min, room temperature).
350μL of clear supernatant was then loaded onto the QIACube rotor
adapter for automated DNA purification. The supernatant was then
treated on board with Inhibitor Removal Technology (IRT(Qiagen)), to

remove inhibitors of subsequent enzymatic. DNA was eluted in 200 µL
volume.

Targeted GM profiling using V4-16S rRNA sequencing, data
processing, and analyses
DNA extracted from stool was sequenced on an Illumina MiSeq, pro-
ducing 2x250bp paired-end reads spanning the V4 hypervariable
region for 242 samples (121 samples from mothers and 121 from their
matched children). 16 S sequencing was performed by the Genome
Technology Access Center at McDonnell Genome Institute
(GTAC@MGI) at Washington University in St. Louis School of Medi-
cine, USA. Primer sequences used were forward primer (5’- AATGA-
TACGGCGACCACCGAGATCTACACATCGTACGTCGTCGGCAGCGTCA
GATGTGTATAAGAGACAGANNNNNGTGCCAGCMGCCGCGGTAA-3’)
and reverse primer (5’-CAAGCAGAAGACGGCATACGAGATACCTACT
GGTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNANNNGGACT
ACHVGGGTWTCTAAT-3’). Data were imported into QIIME2100 using
standard methods and the developer’s docker container (qiime2/
core:2018.8). V4 region ampliconswere assembled and denoised using
the QIIME2 method ‘DADA2 denoise-paired’. Processed V4 amplicons
were grouped into amplicon sequence variants (ASVs) with 100%
sequence similarity. Two reagent-only samples per platewere included
to indicate the potential degree of contamination in the absence of
bacteria in the samples (three 96-well plates used in total). All six
reagent-only samples produced very low assembled 16 S read counts
of between 74 to 372 total reads (average 149 reads), indicating neg-
ligible contamination of the actual samples which had between 11,929
and 108,169 total reads (average 42,335 reads). ASVs were classified
using a pre-trained classifier based on SILVA (release 132)101, a com-
prehensive database that provides accurate annotations102. ASV counts
per sample were exported as biom files from a QIIME2 artifact and
converted into a human readable tsv file using “biom convert”. Read
counts per samplewere rarefied to 11,929 reads per sample (the lowest
count among the 242 samples) using the “rrarefy” command in the R
package “vegan” (version 2.6-4), and normalized read counts were
calculated per sample by dividing the number of reads associated with
each ASV by the total number of reads assigned across ASVs. Taxo-
nomic identifications used are directly provided by SILVA (release
132)101. Raw 16 S rRNA can be downloaded from public database (SRA
BioProject PRJNA911205; All sample accessions are available in Sup-
plementary Data 2).

Whole Metagenome Shotgun (WMS) sequencing and GM
profiling
For the WMS sequence analysis, samples were divided into “high” and
“low” SD and PS based on the distribution of these values across the
sample set. Samples above the average value + 0.5 standard deviations
were considered “high” and samples below the average value
−0.5 standard deviations were considered “low” (35 “low-SD”, 43 “high-
SD, 36 “low-PS” and 32 “high-PS”; Fig. 1c). After this selection, whole
Metagenome Shotgun (WMS) datasets for were generated for 178 of
the 242 samples (89 samples from mothers and 89 from their
respective children) on the Illumina NovaSeq S4 (150bp paired end
reads). WMS sequencing was performed by the Genome Technology
Access Center at McDonnell Genome Institute (GTAC@MGI) at
Washington University in St. Louis School of Medicine, USA. For each
sample, ~6Gbp was generated, producing between 2.7 and 237.2 mil-
lion reads per sample (average 61.5 million reads). The reads for all
178 samples (89 mothers and 89 children) were cleaned of barcodes,
adapters, and low-quality ends using Trimmomatic103 (version 0.36).
TheBMTagger program (installed using conda, version 3.101)was used
to identify human contaminant reads using the human reference
genome (GRCh38.98104). Reads identified as human were removed to
produce final paired-end fastq per each of the 178 samples. RawWMS
read data can be downloaded from public database (SRA BioProject
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PRJNA911205; All sample accessions are available in Supplemen-
tary Data 2).

The 178 WMS samples were mapped against the Unified Human
Gastrointestinal Genome (UHGG) collection, comprising 204,938
nonredundant genomes from 4,644 gut prokaryotes, each theoreti-
cally representing an individual bacterial or archaeal species (95%
average nucleotide identity42) using bowtie248 (v2.3.5.1). The profile
module of the inStrain105 program (v1.0.0) was then run to generate
sequencing breadth and depth of coverage statistics for every gen-
ome, in addition to nucleotide diversity measures per genome per
sample. The depth of coverage values were normalized within every
sample by dividing each genome’s depth by the sum of the depths
across all genomes.

The 178 WMS samples were also used as input for HUMAnN346,47

(version 3), which was run from the biobakery/humann docker con-
tainer (latest version as of October 2020) using the Chocophlan
nucleotide database andUniref90106 protein database. HUMAnN3 runs
the MetaPhlAn (version 3)47 program as an intermediate step to assign
organism-specific functional profiling, and the developer-provided
Metaphlan347 bowtie248 database was used for this intermediate step.
The HUMAnN3 pipeline was used to generate MetaCyc45 pathway
abundance per sample. The “humann_renorm_table” script (included
in the HUMAnN3 distribution) was used to convert Reads Per Kilobase
(RPK) values in the MetaCyc abundance table to a normalized value,
Copies Per Million (CPM), which can be compared across samples.

Cytoscape (v 3.10.0) was used to construct networks (Fig. 8)
connecting high-SD associated genomes (from Figs. 6 and 7) to high-
SD associated pathways (Table 2), with node sizes indicating the mean
decrease in accuracy (MDA) values from the random forest analysis,
and edge thickness and darkness indicate the proportion of reads that
each genome contributes to the pathways (as calculated from the
HUMAnN3 output).

Statistics and reproducibility
No statistical method was used to predetermine sample size, with
sample sizes selected. Investigators performing sample collection (as
previously described for the Early Life Adversity Biological Embedding
and Risk for Developmental Precursors of Mental Disorders Study
(eLABE; details provided in ref. 30)). Investigators performing sample
collection were blinded, but investigators performing bioinformatic
analyses were not blinded to the sample metadata out of necessity.
Randomization of sequenced samples was not performed. No eligible
datasets meeting criteria for inclusion were excluded from the ana-
lyses. Of the available and eligible 134 mother:child pairs of samples,
121 were selected for 16 S sequencing analysis, and of those, 89 that
were either at thehighor the low rangeof either SDor PSwere selected
forwholemetagenome shotgun sequencing, in order to facilitate high-
vs-low statistical comparisons.

Detailed statistical analysis
For the 16 S rRNA/ASV sample analysis, Faith phylogenetic diversity
values35 (for α-diversity) and UniFrac38 weighted and unweighted dis-
tance, as well as Aitchison distance37 (for β-diversity) were calculated
for each sample using QIIME2107. Also for β-diversity, Bray-Curtis dis-
tance diversity values were calculated using the “vegdist” function in
the “vegan” R library (version 2.6-4).

Significant differences of metadata classifications between Low-
SD vs High-SD and Low-PS vs High-PS sample sets were quantified
using several different approaches (Table 1, Supplementary Data 1a).
The correlation between SD and PSwas tested using a T-statistic test of
the Pearson correlation108 (all Pearson correlation statistical results
presented in Supplementary Data 1b). The Shapiro-Wilk test for nor-
mality was used to determine whether each set ofmetadata followed a
normal distribution prior to performing comparisons of differences of
means109 (all Shapiro-Wilk test results and determinations of normality

are provided in Supplementary Data 1c). For data determined to be
normally distributed (e.g., mother’s delivery age, healthy eating index,
mother’s third trimester TNF-α levels, child birthweight), two-sided T-
tests with unequal variance110 were performed (all T-test statistics and
significance values are provided in Supplementary Data 1d). For data
thatweredeterminednot to benormally distributedusing the Shapiro-
Wilk test, Mann–Whitney U-tests111 (also known asWilcoxon Rank Sum
tests) were used to determine significant differences of mean values
(all Mann–Whitney U-test statistics and significance values are pro-
vided in Supplementary Data 1e). Significant differences in categorical
variables (i.e., race, sex of child, route of delivery, high-vs-low breast
milk feeding) were performed using the Chi-Square test112 (all Chi-
Square test statistics and significance values are provided in Supple-
mentary Data 1f).

For the differences in β-diversity between and within sample
groups (Fig. 4 and Supplementary Fig. 3), Benjamini-Hochberg false
discovery rate (FDR) correction was performed to correct for multiple
testing113. FDR correction was not performed for the comparisons of
sample metadata presented in Table 1 and Supplementary Data 1a
because these were tests performed for an overview of associated
metadata prior to testing differences in the GM and were not con-
sidered as part of the results. Significant differences in components of
SD and PS were expected since samples were chosen from the
extremes of phenotype for SD and PS to improve detection of GM
differences between groups30.

ASV-based sample clustering was performed using non-metric
multidimensional scaling (NMDS)114 using the “metaMDS” in the ‘vegan’
R package (v 2.6-4), with setting k = 2. Dirichlet Multinomial Mixtures
(DMM)39 clustering was performed to separate samples into cluster
groups independently of the NMDS plot, using the ‘Diri-
chletMultinomial’ package (v 1.40.0) in R, using ASVs detected in at
least 3 samples. Clustering was performed and tested from n = 1 to
n = 5, and an optimal cluster number per comparison was selected
based on minimum log posterior loss correction (lplc) values from
DMM39, as well as using silhouette scores40 (“cluster” R package, ver-
sion 2.1.4) and prediction strength values41 (“flexible procedures for
clustering; fpc” R package, version 2.2-10), using the NMDS distance
matrix and DMMcluster assignments as input. Cluster strength results
are provided in Supplementary Data 1g.

For the WMS sequence analysis, samples were divided into “high”
and “low” SD and PS based on the distribution of these values across
the sample set. Samples above the average value + 0.5 standard
deviations were considered “high” and samples below the average
value −0.5 standard deviations were considered “low” (35 “low-SD”, 43
“high-SD, 36 “low-PS” and 32 “high-PS”; Fig. 1c). The same approach
was used to separate samples into “high” and “low” sample sets based
on inflammatory marker data (IL-6, IL-8, IL-10, and TNFα).

To identify bacterial taxa that strongly predictmothers’ SD and PS
scores, we analyzed taxonomic and pathway GM profiles using three
approaches. First, a supervised machine-learning approach (Random
Forest49) that identifies non-linear relationships fromhigh dimensional
and dependent data49 was used to (i) quantify the ability to predict
metadata classification based on themicrobiomeprofiles, indicative of
the overall association between the microbiome and the composite
scores, and (ii) for each comparison, identify the specific genomes or
pathways that most strongly differentiate between high and low SD
and PS scores, ranked based on “mean decrease in accuracy” (MDA;
representing the percentage of prediction accuracy that would be lost
if a genome/pathway was excluded from the RF training). When dis-
cussing RF results, “predictors” is used to indicate the genomes or
pathways used in the final RFmodel (minimumMDA 0.1%). RF was run
using the “randomForest” package in R (v4.7-11). The generalization
error of the model was evaluated by out of bag (OOB) error. MDA
values for RF are shown in Supplementary Data 1i for every genome
and Supplementary Data 1j for every pathway for every comparison in
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both the mothers and the children. The association of the metadata
with the microbiome was quantified using the RF classification accu-
racy, and the significanceof the accuracywasmeasuredusingbinomial
distribution tests115 (Fig. 5a) with FDR correction applied to correct for
the number of tests113 (all binomial distribution test statistics and sig-
nificance values are provided in Supplementary Data 1h, and account
for differences in sample numbers in each “high” vs “low” comparison).
RF model accuracy was also examined using receiver operating char-
acteristic (ROC) curves, quantified using the area under the curve
(AUC) (Fig. 5b) generated using the R library “ROCR” (version 1.0-11).
Significance values for the ROC curves were assigned by Two-sided
Mann–Whitney U statistics116, using the “roc.area” function in the
“verification” R package, version 1.42.

Second, linear discriminant analysis effect size (LEfSe50, Galaxy
Version 1.0), the most frequently used statistical tool to determine
significant differences in microbiomemember abundance117, was used
for differential genome abundance testing (default settings at P ≤0.05
for significance) for the non-parametric factorial Kruskal-Wallis (KW)
sum-rank test, and requiring a linear discriminant analysis (LDA) ES
(effect size) of at least 2 in order to identify differentially abundant
taxa. The same approach was used for the pathway analysis, but the ES
test cutoff applied was reduced to a value of 1 instead of 2, since the ES
is designed for the more sparse nature of metagenomic abundance
data50. However, the same RF MDA and LEfSe Kruskal-Wallis cutoffs
were applied for pathway analysis. False Discovery Rate (FDR) cor-
rectionwasperformed for the LEfSeKWsignificance values, among the
genomes and pathways in the top 25 genomes / pathways identified by
the RF analysis (which were the only ones considered for discussion
purposes). LEfSe LDA values effect size values and KW P-values
(uncorrected and FDR-corrected) are shown in Supplementary Data 1i
for every genome, and Supplementary Data 1j for every pathway, for
every comparison in both the mothers and the children.

Third, ANCOM-BC251, a differential abundance tool for micro-
biome data which estimates the unknown sampling fractions and
corrects the bias induced by their differences among samples, was ran
using the “ANCOMBC” R package (version 2.1.4), using genomes
detected in at least 3 samples, and the setting prv_cut = 0.05. This was
performed to provide additional confidence in results identified by
RandomForest and LEfSe, but was not applied as a filter for identifying
taxa of interest to present in figures. FDR-corrected P-values both
against all genomes and against the top 25 genomes identified by RF in
each comparison, are provided in Supplementary Data 1i.

All programs and code used in the analysis are described above.
All samples tested represent distinct biological samples, with no
technical replicates sequenced or used for any statistical analysis. All
relevant metadata required to reproduce the reported analyses are
provided in Supplementary Data 2. The study complies with the
“Strengthening The Organization and Reporting of Microbiome Stu-
dies” (STORMS) criteria.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw 16 S sequence reads and whole metagenome shotgun (WMS)
sequence reads generated in this study have been deposited in the
NCBI Sequence ReadArchive (SRA) database under BioProject number
PRJNA911205. 16 S taxonomic identifications were produced using the
SILVA database (release 132). WMS sequences were mapped to the
Unified Human Gastrointestinal Genome (UHGG) database (version 1),
and pathways were quantified from mapping results using HUMAnN3
(version 3), which is based on UniProt/UniRef 2019_01 sequences and
annotations. The detailed samplemetadata matched to SRA accession
numbers, normalized abundance data for all 16 S ASVs, WMS genomes

and WMS pathways for every sample data are available at in Supple-
mentary Data 2. ASV sequences are available in Supplementary Data 3.
Individuals have been de-identified using random identifiers. Indivi-
duals havebeende-identifiedusing random identifiers. Results fromall
statistical comparisons are provided in Supplementary Data 1.

Code availability
Custom R scripts, example input files and instructions for usage for all
analyses are available at Protocol Exchange (https://doi.org/10.21203/
rs.3.pex-2283/v1)118.
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