8 research outputs found
A cat among the dogs: leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India
The ecology and predatorâprey dynamics of large felids in the tropics have largely been studied in natural systems where wild ungulates constitute the majority of the prey base. However, human-dominated landscapes can be rich in potential prey for large carnivores because of the high density of domestic animals, especially in tropical countries where pastoralism is an important livelihood activity. We report the almost complete dependence of leopards Panthera pardus on domestic animals as prey in the crop lands of Ahmednagar district, Maharashtra, India. From analysis of 85 confirmed leopard scats, 87% of the leopard's prey biomass consisted of domestic animals, with 39% consisting of domestic dogs Canis lupus familiaris alone. The only wild species that occurred in the leopard's diet were rodents, small indian civet Viverricula indica, bonnet macaque Macaca radiata and other primates Semnopithecus spp., mongoose Herpestes spp., and birds. Interviews conducted in 77 households distributed randomly in the study area documented a high density of domestic animals: adult cattle Bos taurus, calves, goats Capra aegagrus, dogs and cats Felis catus occurred at densities of 169, 54, 174, 24 and 61 per km2, respectively. Ivlev's electivity index indicated that dogs and cats were over-represented in the leopard's diet, given the higher densities of goats and cattle. The standing biomass of dogs and cats alone was sufficient to sustain the high density of carnivores at the study site. Our results show that the abundance of potential domestic prey biomass present in human-use areas supports a relatively high density of predators, although this interaction could result in conflict with humans
Recommended from our members
International Wildlife Law: Understanding and Enhancing Its Role in Conservation.
Introduction: Silent Spring, Raucous Summer, and the Looming Winter of Our Discontent
Item does not contain fulltex
Ecological Discomforts and How to Study Them
Item does not contain fulltex
Recommended from our members
Evaluating expertâbased habitat suitability information of terrestrial mammals with GPSâtracking data
AimMacroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species.LocationWorldwide.Time period1998-2021.Major taxa studiedForty-nine terrestrial mammal species.MethodsUsing GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types.ResultsIUCN habitat suitability data were in accordance with the GPS data (>â95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a >â50% probability of agreement based on proportional habitat use and selection ratios, respectively.Main conclusionsWe show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data