189 research outputs found

    Mechanism of carrier-induced ferromagnetism in magnetic semiconductors

    Full text link
    Taking into account both random impurity distribution and thermal fluctuations of localized spins, we have performed a model calculation for the carrier (hole) state in Ga1x_{1-x}Mnx_xAs by using the coherent potential approximation (CPA). The result reveals that a {\it p}-hole in the band tail of Ga1x_{1-x}Mnx_xAs is not like a free carrier but is rather virtually bounded to impurity sites. The carrier spin strongly couples to the localized {\it d} spins on Mn ions. The hopping of the carrier among Mn sites causes the ferromagnetic ordering of the localized spins through the double-exchange mechanism. The Curie temperature obtained by using conventional parameters agrees well with the experimental result.Comment: 7 pages, 4 figure

    The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    Get PDF
    Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account dislocation density and distribution. Different doping concentrations and variations in gas phase composition and pressure are investigated

    Solubility limit and precipitate formation in Al-doped 4H-SiC epitaxial material

    No full text
    Heavily Al-doped 4H–SiC structures have been prepared by vapor phase epitaxy. Subsequent anneals have been carried out in an Ar atmosphere in a rf-heated furnace between 1500 °C and 2000 °C for 0.5 to 3 h. Secondary ion mass spectrometry has been utilized to obtain Al concentration versus depth as well as lateral distributions (ion images). Transmission electron microscopy(TEM) has been employed to study the crystallinity and determine phase composition after heat treatment. A solubility limit of ∼2×10²⁰ Al/cm³ (1900 °C) is extracted. Three-dimensional ion images show that the Al distribution does not remain homogeneous in layers heat treated at 1700 °C or above when the Al concentration exceeds 2×10²⁰ cm⁻³. Al-containing precipitates are identified by energy-filtered TEM.Financial support was partly received from the Swedish Foundation for Strategic Research (SSF) SiCEP program

    Magnetic spin excitations in Mn doped GaAs : A model study

    Full text link
    We provide a quantitative theoretical model study of the dynamical magnetic properties of optimally annealed Ga1x_{1-x}Mnx_xAs. This model has already been shown to reproduce accurately the Curie temperatures for Ga1x_{1-x}Mnx_xAs. Here we show that the calculated spin stiffness are in excellent agreement with those which were obtained from ab-initio based studies. In addition, an overall good agreement is also found with available experimental data. We have also evaluated the magnon density of states and the typical density of states from which the "mobility edge", separating the extended from localized magnon states, was determined. The power of the model lies in its ability to be generalized for a broad class of diluted magnetic semiconductor materials, thus it bridges the gap between first principle calculations and model based studies.Comment: 5 pages, 5 figures, Text and some figures revised to match the accepted versio

    Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective

    Full text link
    Over the last decade the search for compounds combining the resources of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by continual demonstrations of remarkable low-temperature functionalities found for ferromagnetic structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample observations of ferromagnetic signatures at high temperatures in a number of non-metallic systems. In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.Comment: review, 13 pages, 8 figures, 109 reference
    corecore