1,321 research outputs found
Phonon and Elastic Instabilities in MoC and MoN
We present several results related to the instability of MoC and MoN in the
B1 (sodium chloride) structure. These compounds were proposed as potential
superconductors with moderately high transition temperatures. We show that the
elastic instability in B1-structure MoN, demonstrated several years ago,
persists at elevated pressures, thus offering little hope of stabilizing this
material without chemical doping. For MoC, another material for which
stoichiometric fabrication in the B1-structure has not proven possible, we find
that all of the cubic elastic constants are positive, indicating elastic
stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as
well), further illustrating the rich behavior of carbo-nitride materials. We
also present additional electronic structure results for several transition
metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in
the properties of these materials. Deviations from strict electron counting
dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR
Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations
Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models using Aqua and Terra MODIS, Landsat TM and ETM+, ENVISAT MERIS surface reflectance products, and simulated data of the recently-launched Sentinel 2 MSI and Sentinel 3 OLCI. Special emphasis was placed on testing generic models which require no re-parameterization for these species. Four techniques were investigated: support vector machines (SVM), neural network (NN), multiple linear regression (MLR), and vegetation indices (VI). For each technique two types of models were tested based on (a) reflectance data, taken at close range and resampled to simulate spectral bands of satellite sensors; and (b) surface reflectance satellite products. Both types of models were validated using MODIS, TM/ETM+, and MERIS data. MERIS was used as a prototype of OLCI Sentinel-3 data which allowed for assessment of the anticipated accuracy of OLCI. All models tested provided a robust and consistent selection of spectral bands related to green LAI in crops representing a wide range of biochemical and structural traits. The MERIS observations had the lowest errors (around 11%) compared to the remaining satellites with observational data. Sentinel 2 MSI and OLCI Sentinel 3 estimates, based on simulated data, had errors below 8%. However the accuracy of these models with actual MSI and OLCI surface reflectance products remains to be determined
Informative spectral bands for remote green LAI estimation in C3 and C4 crops
Green leaf area index (LAI) provides insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast and nondestructive estimation of green LAI. A number of methods have been used for the estimation of green LAI; however, the specific spectral bands employed varied widely among the methods and data used. Our objectives were (i) to find informative spectral bands retained in three types of methods, neural network (NN), partial least squares (PLS) regression and vegetation indices (VI), for estimating green LAI in maize (a C4 species) and soybean (a C3 species); (ii) to assess the accuracy of the algorithms estimating green LAI using a minimal number of bands for each crop and generic algorithms for the two crops combined. Hyperspectral reflectance and green LAI of irrigated and rainfed maize and soybean were taken during eight years of observations (altogether 24 field-years) in very different weather conditions. The bands retained in the best NN, PLS and VI methods were in close agreement. The validity of these bands was further confirmed via the uninformative variable elimination PLS technique. The red edge and the NIR bands were selected in all models and were found the most informative. Identifying informative spectral bands across all four techniques provided insight into spectral features of reflectance specific for each species as well as those that are common to species with different leaf structures, canopy architectures and photosynthetic pathways. The analyses allowed development of algorithms for estimating green LAI in soybean and maize with no re-parameterization. These findings lay a strong foundation for the development of generic algorithms which is crucial for remote sensing of vegetation biophysical parameters
Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming
The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9 degrees C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1 degrees C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed
Voriconazole is safe and effective as prophylaxis for early and late fungal infections following allogeneic hematopoietic stem cell transplantation
Seventy-two patients undergoing allogeneic transplantation were treated with voriconazole (VOR) as antifungal prophylaxis starting from day −2 of transplantation and continuing until withdrawal of immunosuppression. Patients were assessed for safety and the incidence of definite, probable, or possible fungal infection throughout transplantation was evaluated. VOR was well tolerated. Only 14% of patients required interruption of VOR therapy because of toxicity: liver toxicity (8%), cardiac Q –T interval prolongation (1%), or other side effects (5%). In the early post-transplant period (120 days), no patients developed probable or definite fungal infection while receiving VOR. No Candida infections were seen in either period. These data suggest that fungal prophylaxis with VOR following allogeneic transplantation is safe and effective.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73360/1/j.1399-3062.2009.00455.x.pd
- …