24 research outputs found

    Quantum, cyclic and particle-exchange heat engines

    Full text link
    Differences between the thermodynamic behavior of the three-level amplifier (a quantum heat engine based on a thermally pumped laser) and the classical Carnot cycle are usually attributed to the essentially quantum or discrete nature of the former. Here we provide examples of a number of classical and semiclassical heat engines, such as thermionic, thermoelectric and photovoltaic devices, which all utilize the same thermodynamic mechanism for achieving reversibility as the three-level amplifier, namely isentropic (but non-isothermal) particle transfer between hot and cold reservoirs. This mechanism is distinct from the isothermal heat transfer required to achieve reversibility in cyclic engines such as the Carnot, Otto or Brayton cycles. We point out that some of the qualitative differences previously uncovered between the three-level amplifier and the Carnot cycle may be attributed to the fact that they are not the same 'type' of heat engine, rather than to the quantum nature of the three-level amplifier per se.Comment: 9 pages. Proceedings of 'Frontiers of Quantum and Mesoscopic Thermodynamics', Prague 200

    Publication models in a changing environment: bibliometric analysis of books and book chapters using publications by Surrey Beatty & Sons

    Get PDF
    Expectations and patterns of publication have changed markedly with evolving online availability and associated development of new citation gathering databases. Perhaps the most vulnerable components of the scientific literature to ongoing change are books and book chapters, given their elongated publication timelines and generally more limited online availability. To test this, we applied citation analyses and assessments of library holdings to determine the use of the natural history books published by Surrey Beatty & Sons between 1987 and 2010. We (i) evaluated the relative use of book chapters and journal papers by comparing citations to chapters in the five books of the Nature Conservation series by Surrey Beatty & Sons to citations of journal chapters in four Australian journals published in the same years, (ii) determined the efficacy of four different databases in retrieving citations to book chapters by comparing their recovery of citations to the five books of the Nature Conservation series, and (iii) quantified noncitation measures related to library holdings to evaluate the use of the books on the entire Surrey Beatty & Sons list. Mean citations/chapter to the first three books in the Nature Conservation series were similar to the mean citations/paper in four Australian journals published in the same years. However, the mean citations/chapter of the last two books declined relative to citations/paper for the journals, suggesting a fall in book use evident by early this century. Citation retrieval varied across databases; Google Scholar retrieved most citations, followed by Scopus, Web of Science (Cited Reference Search) and Web of Knowledge. Contrary to published concerns, no citations retrieved by Google Scholar were in questionable sources such as contents pages - many were from highly ranked journals. Each book in the full Surrey Beatty & Sons list was held by an average of 45.3 libraries in Australia and 36.1 in the USA, and less than five in each of the UK, New Zealand, Hong Kong, Canada, Germany and South Africa. This was a similar coverage to another Australian publisher, the Royal Zoological Society of New South Wales, and indicated strong markets in Australia and the USA. It was less, though, than the number of libraries with current or past subscriptions to five Australian journals publishing nature conservation content. We conclude that citation data for books and book chapters are available and that library holdings provide another measure of use. The online ‘visibility’ of books may be a problem, but can be improved through better marketing and improved author search techniques

    Development of biotic indices for establishing and monitoring ecosystem health of the Swan-Canning Estuary

    Get PDF
    The Swan-Canning Estuary is highly valued for its ecological, recreational, commercial and indigenous importance (e.g. Seddon 1972, Swan River Trust 2008, 2009). It supports a diverse range of fish species (several of which complete their life cycles in the system and/or are recreationally or commercially important, e.g. Loneragan et al. 1989, Kanadjembo et al. 2001, Hoeksema and Potter 2006), migratory and resident waterbirds (Bamford et al. 2003), submerged and fringing vegetation (e.g. Hillman et al. 1995, Astill and Lavery 2001, McMahon 2001) and a dolphin population (Lo 2009). The Swan-Canning Estuary and its large (ca 125 000 km2) catchment have been subjected to substantial anthropogenic change since European settlement in the early to mid 1800s, and the system is now classified as highly modified (Commonwealth of Australia 2002). These artificial modifications, combined with the ongoing effects of local population growth and climate change, continue to have a wide range of implications for the water quality of this system. For example, reduced river flow due to damming or diversion of the major tributaries and the effects of climate change, increased tidal exchange through widening and deepening of the estuary mouth and extensive clearing of catchment vegetation, have all contributed to rising salinity throughout this system (Hamilton et al. 2001, Thomson et al. 2001, Chan et al. 2002, CSIRO 2009). Changes in the volumes of marine vs riverine flow have also exacerbated the stratification of salinity and dissolved oxygen concentration within the water column, particularly in the upper estuarine reaches where bottom waters become hypoxic during drier periods of the year (Hamilton et al. 2001, Thomson et al. 2001, http://www.swanrivertrust.wa.gov.au/science/river/Content/plots.aspx). This lack of dissolved oxygen has become so extensive that remedial oxygenation of both the Swan and Canning rivers is now undertaken mechanically (http://www.swanrivertrust.wa.gov.au/ science/river/content/oxygenation.aspx). Widespread land clearing, shoreline modification and the growth of surrounding urban and agricultural activity have also resulted in increased surface runoff from the catchment, and thus also of the sediment, nutrient and pollutant loads entering the estuary. These loadings have also risen due to the vast network of drains servicing residential, farming and industrial areas that discharge into the system, and their impacts are further compounded by the reduced flushing of the estuary due to diminishing rainfall (Jakowyna et al. 2000, Swan River Trust 2003, 2009, Foulsham 2009). The system, and particularly its upper reaches, is now considered to be eutrophic to hypereutrophic (Swan River Trust 2009), and the levels of various non-nutrient contaminants in the sediment exceed ANZECC and ARMCANZ Interim Sediment Quality Guideline Trigger Values at several locations throughout the estuary (Nice 2009)

    Factors influencing the partitioning of food resources among six fish species in a large embayment with juxtaposing bare sand and seagrass habitats

    No full text
    Six abundant fish species were collected from a large embayment during both day and night and at bimonthly intervals for a year. Gerres subfasciatus and Upeneus tragula occurred mainly over bare sand, while Psammoperca waigiensis, Centrogenys vaigiensis and Apogon victoriae lived mainly in seagrass (Amphibolis antarctica) and A. rueppellii often migrated from seagrass to over bare sand at night. All species except U. tragula fed at night, as well as during the day. The overall dietary compositions of the six species were significantly different from each other, even when the species occurred in the same habitat. G. subfasciatus and U. tragula consumed greater volumes of errant polychaetes, which could be readily targeted in a substrate that does not contain dense rhizome mats. In contrast, P. waigiensis, C. vaigiensis and A. victoriae ingested greater volumes of carid decapods, which are particularly abundant in seagrass and, thus, within the water column. Furthermore, when A. rueppellii moved at night from seagrass to over sand, the consumption of carid decapods declined, whereas that of polychaetes and particularly mysids, which are very abundant over bare sand, increased. However, the composition of the prey consumed by different species within the same habitat also often varied markedly. For example, unlike U. tragula, G. subfasciatus ingested not only sedentary polychaetes, but also considerable volumes of errant polychaetes, reflecting its ability to use a combination of vision and its highly protrusible mouth to target prey both on and just below the substrate surface. Differences in the types and range of prey ingested by the six species could often be related to differences in the overall size, width and/or protrusibility of the mouth. Furthermore, dietary breadth was greatest in species with the largest mouth dimensions. The diets of three species underwent diel changes that could be related to differences in foraging mode and/or prey availability. Thus, a use of vision to detect prey would account for the greater consumption during the day of copepods by G. subfasciatus and of small teleosts by A. rueppellii, while the nocturnal emergence of amphipods and/or tanaids from the substrate explains their greater ingestion by G. subfasciatus, A. victoriae and A. rueppellii at night. Although the smaller individuals of each species consumed larger volumes of prey, such as copepods and mysids, and the larger fish ingested greater volumes of prey, such as decapods and teleosts, the extent of the size-related changes in diet varied markedly amongst species

    A long-lived, estuarine-resident fish species selects its macroinvertebrate food source based on certain prey and predator traits

    No full text
    This study has explored the extent to which the predominant faunal component of the diet (benthic macroinvertebrates) of the large, long-lived estuarine-resident Acanthopagrus butcheri is related to particular prey and predator traits. Focus is placed on the location (infaunal vs epifaunal) and species size category (small vs medium vs large) of the prey and feeding behaviour of A. butcheri. Data on the benthic macroinvertebrates in the stomach contents of A. butcheri in a microtidal estuary (Swan-Canning, Western Australia) are compared with those of macroinvertebrates sampled in the benthos at the same sites and times in eight consecutive seasons using an Ekman grab. The eight most abundant small macroinvertebrate species in the benthic samples were infaunal and, apart from the bivalve Arthritica semen that was ingested by only a few fish, were not fed on by A. butcheri. In contrast, the three most abundant medium and large-sized species in the benthos, the epifaunal bivalves Xenostrobus securis and Fluviolanatus subtortus and infaunal nereidid polychaete Simplisetia aequisetis, were preyed on substantially, with the first ingested by 54% of A. butcheri and contributing over 51% to dietary volume. Although the eunicid polychaete Marphysa sanguinea occurred in only 7% of benthic samples and contributed <0.1% to abundance, this large infaunal species ranked second in contribution to dietary volume (12%). This species and S. aequisetis were preyed on when they emerged in part or wholly above the substrata. The above results imply that, in terms of prey, A. butcheri selects predominantly medium and large epifaunal macroinvertebrate species and those medium to large infaunal polychaetes which, at times, move out of the substrata. This reflects non-emergent infauna being present in essentially all benthic samples and contributing 66% to total abundance, whereas this group was found in only 8% of stomach samples of A. butcheri and contributed only 2% to dietary volume. In contrast, emergent infauna and epifauna contributed 12 and 22%, respectively, to abundance in the benthos, but as much as 22 and 75%, respectively, to the diets of A. butcheri. It is concluded that the marked selectivity of A. butcheri for prey was related to certain prey and predator traits, i.e. size category of prey species, and prey located above the substrata, either permanently or at frequent intervals, and to visual acuity and a fast-swimming angled attack by the predator

    Relationships between fish faunas and habitat type in south-western Australian estuaries. Fisheries Research and Development Corporation Final Report, July 2009

    No full text
    OBJECTIVES 1. Devise quantitative and readily usable approaches for classifying the local-scale nearshore habitats within a range of estuaries in south-western Australia and predicting the habitat to which any nearshore site in those systems should be assigned. 2. Determine statistically how the compositions of the fish and benthic invertebrate assemblages in selected south-western Australian estuaries are related to habitat type. 3. Formulate a readily usable and reliable method for predicting which fish and benthic invertebrate species are likely to be abundant at any particular nearshore site in one of the above estuaries

    Quantum Ratchets and quantum heat pumps

    No full text
    Quantum ratchets are Brownian motors in which the quantum dynamics of particles induces qualitatively new behavior. We review a series of experiments in which asymmetric semiconductor devices of sub-micron dimensions are used to study quantum ratchets for electrons. In rocked quantum-dot ratchets electron-wave interference is used to create a non-linear voltage response, leading to a ratchet effect. The direction of the net ratchet current in this type of device can be sensitively controlled by changing one of the following experimental variables: a small external magnetic field, the amplitude of the rocking force, or the Fermi energy. We also describe a tunneling ratchet in which the current direction depends on temperature. In our discussion of the tunneling ratchet we distinguish between three contributions to the non-linear current-voltage characteristics that lead to the ratchet effect: thermal excitation over energy barriers, tunneling through barriers, and wave reflection from barriers. Finally, we discuss the operation of adiabatically rocked tunneling ratchets as heat pumps

    Quantum ratchets and quantum heat pumps

    No full text
    corecore