4,792 research outputs found

    Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu2_2(BO3_3)2_2

    Get PDF
    The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu2_2(BO3_3)2_2 is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature while the integrated spectral weight can be explained by an isolated dimer model up to 10~K. Analyzing this anomalous spectral line-shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens. We explain the underlying mechanism through a simple yet quantitatively accurate model of correlated decay of triplons: an excited triplon is long-lived if no thermally populated triplons are near-by but decays quickly if there are. The phenomenon is a direct consequence of frustration induced triplon localization in the Shastry--Sutherland lattice.Comment: 5 pages, 4 figure

    Thermodynamical Study on the Heavy-Fermion Superconductor PrOs4Sb12: Evidence for Field-Induced Phase Transition

    Full text link
    We report measurements of low-temperature specific heat on the 4f^2-based heavy-fermion superconductor PrOs4Sb12. In magnetic fields above 4.5 T in the normal state, distinct anomalies are found which demonstrate the existence of a field-induced ordered phase (FIOP). The Pr nuclear specific heat indicates an enhancement of the 4f magnetic moment in the FIOP. Utilizing a Maxwell relation, we conclude that anomalous entropy, which is expected for a single-site quadrupole Kondo model, is not concealed below 0.16 K in zero field. We also discuss two possible interpretations of the Schottky-like anomaly at ~3 K, i.e., a crystalline-field excitation or a hybridization gap formation.Comment: 5 pages with 5 figures, a note with two references added in proo

    The Extended Shapes of Galactic Satellites

    Full text link
    We are exploring the extended stellar distributions of Galactic satellite galaxies and globular clusters. For seven objects studied thus far, the observed profile departs from a King function at large r, revealing a ``break population'' of stars. In our sample, the relative density of the ``break'' correlates to the inferred M/L of these objects. We discuss opposing hypotheses for this trend: (1) Higher M/L objects harbor more extended dark matter halos that support secondary, bound, stellar ``halos''. (2) The extended populations around dwarf spheroidals (and some clusters) consist of unbound, extratidal debris from their parent objects, which are undergoing various degrees of tidal disruption. In this scenario, higher M/L ratios reflect higher degrees of virial non-equilibrium in the parent objects, thus invalidating a precept underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of Galaxies and Their Halo

    High-pressure transport properties of CeRu_2Ge_2

    Full text link
    The pressure-induced changes in the temperature-dependent thermopower S(T) and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the single-site Anderson model. The Ce-ions are treated as impurities and the coherent scattering on different Ce-sites is neglected. Changing the hybridisation \Gamma between the 4f-states and the conduction band accounts for the pressure effect. The transport coefficients are calculated in the non-crossing approximation above the phase boundary line. The theoretical S(T) and \rho(T) curves show many features of the experimental data. The seemingly complicated temperature dependence of S(T) and \rho(T), and their evolution as a function of pressure, is related to the crossovers between various fixed points of the model.Comment: 9 pages, 10 figure

    Structures and orientational transitions in thin films of tilted hexatic smectics

    Full text link
    We present detailed systematic studies of structural transformations in thin liquid crystal films with the smectic-C to hexatic phase transition. For the first time all possible structures reported in the literature are observed for one material (5 O.6) at the variation of temperature and thickness. In unusual modulated structures the equilibrium period of stripes is twice with respect to the domain size. We interpret these patterns in the frame work of phenomenological Landau type theory, as equilibrium phenomena produced by a natural geometric frustration in a system having spontaneous splay distortion.Comment: 7 pages, 6 figure

    Pulsar Constraints on Neutron Star Structure and Equation of State

    Full text link
    With the aim of constraining the structural properties of neutron stars and the equation of state of dense matter, we study sudden spin-ups, glitches, occurring in the Vela pulsar and in six other pulsars. We present evidence that glitches represent a self-regulating instability for which the star prepares over a waiting time. The angular momentum requirements of glitches in Vela indicate that at least 1.4% of the star's moment of inertia drives these events. If glitches originate in the liquid of the inner crust, Vela's `radiation radius' must exceed ~12 km for a mass of 1.4 solar masses. Observational tests of whether other neutron stars obey this constraint will be possible in the near future.Comment: 5 pages, including figures. To appear in Physical Review Letter

    Microscopic theory of quadrupolar ordering in TmTe

    Full text link
    We have calculated the crystal electric field of TmTe (T>T_Q) and have obtained that the ground state of a Tm 4f hole is the Γ7\Gamma_7 doublet in agreement with Mossbauer experiments. We study the quadrupole interactions arising from quantum transitions of 4f holes of Tm. An effective attraction is found at the L point of the Brillouin zone, q⃗L\vec{q}_L. Assuming that the quadrupolar condensation involves a single arm of q⃗L\vec{q}_L we show that there are two variants for quadrupole ordering which are described by the space groups C2/c and C2/m. The Landau free energy is derived in mean-field theory. The phase transition is of second order. The corresponding quadrupole order parameters are combinations of T2gT_{2g} and EgE_g components. The obtained domain structure is in agreement with observations from neutron diffraction studies for TmTe. Calculated lattice distortions are found to be different for the two variants of quadrupole ordering. We suggest to measure lattice displacements in order to discriminate between those two structures.Comment: 10 pages, 2 figures, 5 tables; accepted by PR

    Rank rigidity for CAT(0) cube complexes

    Full text link
    We prove that any group acting essentially without a fixed point at infinity on an irreducible finite-dimensional CAT(0) cube complex contains a rank one isometry. This implies that the Rank Rigidity Conjecture holds for CAT(0) cube complexes. We derive a number of other consequences for CAT(0) cube complexes, including a purely geometric proof of the Tits Alternative, an existence result for regular elements in (possibly non-uniform) lattices acting on cube complexes, and a characterization of products of trees in terms of bounded cohomology.Comment: 39 pages, 4 figures. Revised version according to referee repor

    Structure, Deformations and Gravitational Wave Emission of Magnetars

    Full text link
    Neutron stars can have, in some phases of their life, extremely strong magnetic fields, up to 10^15-10^16 G. These objects, named magnetars, could be powerful sources of gravitational waves, since their magnetic field could determine large deformations. We discuss the structure of the magnetic field of magnetars, and the deformation induced by this field. Finally, we discuss the perspective of detection of the gravitational waves emitted by these stars.Comment: 11 pages, 2 figures, prepared for 19th International Conference on General Relativity and Gravitation (GR19), Mexico City, Mexico, July 5-9, 201

    Galactic Cosmic Ray Origins and OB Associations: Evidence from SuperTIGER Observations of Elements 26_{26}Fe through 40_{40}Zr

    Get PDF
    We report abundances of elements from 26_{26}Fe to 40_{40}Zr in the cosmic radiation measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. These observations resolve elemental abundances in this charge range with single-element resolution and good statistics. These results support a model of cosmic-ray origin in which the source material consists of a mixture of 19−6+11^{+11}_{-6}\% material from massive stars and ∼\sim81\% normal interstellar medium (ISM) material with solar system abundances. The results also show a preferential acceleration of refractory elements (found in interstellar dust grains) by a factor of ∼\sim4 over volatile elements (found in interstellar gas) ordered by atomic mass (A). Both the refractory and volatile elements show a mass-dependent enhancement with similar slopes.Comment: 9 pages, 12 figures, 2 tables, accepted by Ap
    • …
    corecore