32 research outputs found

    Accelerated stem cell labeling with ferucarbotran and protamine

    Get PDF
    To develop and characterize a clinically applicable, fast and efficient method for stem cell labeling with ferucarbotran and protamine for depiction with clinical MRI. The hydrodynamic diameter, zeta potential and relaxivities of ferucarbotran and varying concentrations of protamine were measured. Once the optimized ratio was found, human mesenchymal stem cells (MSCs) were labeled at varying incubation times (1–24 h). Viability was assessed via Trypan blue exclusion testing. 150,000 labeled cells in Ficoll solution were imaged with T1-, T2- and T2*-weighted sequences at 3 T, and relaxation rates were calculated. Varying the concentrations of protamine allows for easy modification of the physicochemical properties. Simple incubation with ferucarbotran alone resulted in efficient labeling after 24 h of incubation while assisted labeling with protamine resulted in similar results after only 1 h. Cell viability remained unaffected. R2 and R2* relaxation rates were drastically increased. Electron microscopy confirmed intracellular iron oxide uptake in lysosomes. Relaxation times correlated with results from ICP-AES. Our results show internalization of ferucarbotran can be accelerated in MSCs with protamine, an approved heparin antagonist and potentially clinically applicable uptake-enhancing agent

    MR imaging of therapy-induced changes of bone marrow

    Get PDF
    MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment

    Optical imaging of the peri-tumoral inflammatory response in breast cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Peri-tumoral inflammation is a common tumor response that plays a central role in tumor invasion and metastasis, and inflammatory cell recruitment is essential to this process. The purpose of this study was to determine whether injected fluorescently-labeled monocytes accumulate within murine breast tumors and are visible with optical imaging.</p> <p>Materials and methods</p> <p>Murine monocytes were labeled with the fluorescent dye DiD and subsequently injected intravenously into 6 transgenic MMTV-PymT tumor-bearing mice and 6 FVB/n control mice without tumors. Optical imaging (OI) was performed before and after cell injection. Ratios of post-injection to pre-injection fluorescent signal intensity of the tumors (MMTV-PymT mice) and mammary tissue (FVB/n controls) were calculated and statistically compared.</p> <p>Results</p> <p>MMTV-PymT breast tumors had an average post/pre signal intensity ratio of 1.8+/- 0.2 (range 1.1-2.7). Control mammary tissue had an average post/pre signal intensity ratio of 1.1 +/- 0.1 (range, 0.4 to 1.4). The p-value for the difference between the ratios was less than 0.05. Confocal fluorescence microscopy confirmed the presence of DiD-labeled cells within the breast tumors.</p> <p>Conclusion</p> <p>Murine monocytes accumulate at the site of breast cancer development in this transgenic model, providing evidence that peri-tumoral inflammatory cell recruitment can be evaluated non-invasively using optical imaging.</p

    Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness

    Get PDF
    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research.Mercator Stiftung via GAMEPostprint4,41

    Factors Determining the Stability of Marine Fouling Communities in Tokyo Bay, Japan

    No full text
    During the last decades, marine ecosystems have experienced an increasing amount of bioinvasions mediated by human activities, which have often caused irreversible changes in the affected environment. Recent studies have revealed ship traffic as a major anthropogenic pathway and source for introductions. However, the role of sessile epibenthic communities attached to ship hulls, i.e. fouling communities, as a source of species’ invasion after transport to a new environment has hardly been investigated. The first obstacle for a transported species to become invasive is its survival in the new habitat. For a transported organism, the probability to establish successfully should increase with the stability of the community it is part of. Controversially discussed concepts predict the ability of a transported community to resist against environmental changes and recruitment by the local, non-indigenous species based on its diversity. The present study aims to investigate the mechanisms that determine the stability of marine fouling communities after transport into a new environment. Assemblages of two different successional stages (2-months and 4-months old) were transplanted from a port site to a lagoon site, and vice versa, in the inner Tokyo Bay, Japan. Their stability was measured as the rate at which they converged to local communities of the same successional stage in terms of community composition. In all cases, older transplanted fouling communities converged slower towards their native counterparts than younger ones. Subsequent analyses on community diversity and available settlement substratum – the most important resource in hardbottom communities – and the convergence rate did not detect any significant relationship between them. Instead, the identity and life strategy of species present in the transplanted communities as well as the species present in the environment were the most important factors determining the persistence of the introduced communities. More precisely, bivalves and a serpulid worm strongly enhanced the stability of fouling communities in the new environment, while Molgula manhattensis and Polydora cornuta accelerated the convergence process by rapid recruitment from the local environment into the introduced communities and as well by mortality after transport of the second species. The importance of key species and their life strategies does not support the diversity-stability hypothesis and should lead to a concept that predicts community stability from the life strategy of component species. Moreover, as a practical implication of this study, the establishment of fouling communities on mobile substrata should be controlled in order to reduce the risk of marine bioinvasions caused by matured fouling communitie

    Food webs

    No full text
    corecore