15 research outputs found

    Association between STK11 Gene Polymorphisms and Coronary Artery Disease in Type 2 Diabetes in Han Population in China

    No full text
    Background. Recent studies indicated that the Serine threonine kinase 11 (STK11), which is a key regulator of the AMP-activated protein kinase (AMPK), plays a crucial role in cardiovascular system. This study aimed to investigate whether genetic variations in the STK11 gene affect the risk of coronary artery disease (CAD) in Chinese type 2 diabetics. Methods. 5 haplotype-tagging single nucleotide polymorphisms (SNPs) were selected, and 288 CAD-positive cases and 159 CAD-negative controls with type 2 diabetes were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Results. The carriers of minor allele A at rs12977689 had a higher risk of CAD compared to the homozygotes of CC (OR = 1.572, 95% CI = 1.039–2.376, p=0.035), and the difference was still significant after adjustment for the other known CAD risk factors (OR′ = 1.184, 95%  CI′ = 1.036–1.353, p′=0.013). Conclusion. Genetic variability at STK11 locus is associated with CAD risk in type 2 diabetes in the Chinese population

    Dietary supplementation of laminarin improves the reproductive performance of sows and the growth of suckling piglets

    No full text
    Abstract Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry. Laminarin has been shown to improve antioxidant capacity, reduce the inflammatory response, and favor the homeostasis of intestinal microbiota. However, the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown. Methods A total of 40 Landrace × Yorkshire multiparous sows on d 85 of gestation, similar in age, body weight (BW), parity and reproductive performance, were randomly divided into four dietary treatments with 10 sows per treatment, receiving a control diet (basal pregnancy or lactating diets) and a basal diet supplemented with 0.025%, 0.05% and 0.10% laminarin, respectively. The experiment lasted from d 85 of gestation to d 21 of lactation. Results Laminarin supplementation linearly increased number born alive per litter (P = 0.03), average daily feed intake (ADFI, P < 0.01), and total milk yield of sows during the lactation of 1–21 d (P = 0.02). Furthermore, maternal laminarin supplementation increased the average daily gain (ADG) of piglets while tending to reduce the culling and death rate before weaning. In addition, alterations to the composition of colostrum and milk, as well as to serum inflammatory cytokines and immunoglobulins of sows were observed. The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring. Conclusions Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets. Graphical Abstrac

    In utero bisphenol A exposure disturbs germ cell cyst breakdown through the PI3k/Akt signaling pathway and BDNF expression

    No full text
    Purpose: To determine the influence of the environmental endocrine disruptor bisphenol A (BPA) on germ cell cyst breakdown and explore the possible mechanisms regulating this activity. Methods: BPA (2 μg/kg/d or 20 μg/kg/d) or tocopherol-stripped corn oil (vehicle control) was administered to pregnant mice by gavage at gestational day 11, and the offspring (prenatally treated mice) were sacrificed and ovariectomized at postnatal day (PND) 4 and PND22. Ovarian morphology was documented in the first filial (F1) generation female offspring, and the follicles were analyzed and classified morphologically on PND 4. To discover differentially expressed genes and associated target pathways, we used RNA-seq, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Ontology (GO) analysis. The mRNA expression of key steroid hormone synthesis-related genes was evaluated by Q-PCR in forskolin-induced KGN cells. Western blotting (WB) and qRTPCR were used to determine the protein and gene expression levels of brain-derived neurotrophic factor (BDNF). Results: BPA, a typical endocrine disrupting chemical (EDC), decreased the expression of the key steroid hormone synthesis-related genes P450scc and aromatase, while the expression of Star increased significantly and caused no significant difference in the expression of Cyp17a1 or HSD3β in forskolin-induced KGN cells. Moreover, we confirmed that in utero exposure to environmentally relevant concentrations of BPA (2 μg/kg/d and 20 μg/kg/d) could significantly disrupt germ cell cyst breakdown, leading to the generation of fewer primordial follicles than in the control group. The factors mediating the inhibitory effects included the PI3K-Akt signaling pathway and a significant downregulation of BDNF. Conclusions: These findings indicate that in utero exposure to BPA at low doses, which are lower than recommended as ‘safe’ dosages, may influence the formation of primordial follicles by inhibiting the expression of steroid hormone synthesis-related genes and partly by regulating the BDNF-mediated PI3K/Akt pathway

    Additional file 1 of Development and validation of a predictive model of abnormal uterine bleeding associated with ovulatory dysfunction: a case-control study

    No full text
    Additional file 1: Supplemental Fig. 1. Flowchart. Supplemental Table 1. Comparison of potential influencing factors associated with AUB-O between the two groups. Supplemental Table 2. Assignment of predictive factors of AUB-O

    Effects of hormone replacement therapy on glucose and lipid metabolism in peri- and postmenopausal women with a history of menstrual disorders

    No full text
    Abstract Background Previous studies have indicated that women with a history of menstrual disorders have an increased risk of metabolic and cardiovascular diseases. This has been attributed to the high proportion of polycystic ovary syndrome (PCOS) among this group. The favorable effects of hormone replacement therapy (HRT) on serum lipid profiles and glucose homeostasis in postmenopausal women is widely accepted. Whether HRT can also show positive effects on metabolic homeostasis in menopausal women with prior menstrual disorders (a putative PCOS phenotype) has not been reported yet. The aim of the study was to compare the effects of HRT on glucose and lipid metabolism in peri- and postmenopausal women with prior menstrual disorders and controls who did not have prior menstrual disorders. Methods A retrospective multicenter study was conducted including 595 peri- and postmenopausal women who received HRT at four hospitals in the Zhejiang Province from May 31, 2010 to March 8, 2021. Participants were divided into the Normal menstruation group and the Menstrual disorders group according to their prior usual menstrual cycle pattern. Glucose and lipid metabolism indicators were assessed at baseline and after HRT. The results were compared between and within the groups, and data from peri- and postmenopausal women were analyzed separately. Results HRT significantly decreased fasting insulin and homeostasis model assessment of insulin resistance in perimenopausal users, and fasting plasma glucose levels in postmenopausal users with prior menstrual disorders, compared with baseline. Furthermore, HRT decreased low-density lipoprotein cholesterol, total cholesterol, fasting insulin, fasting plasma glucose and homeostasis model assessment of insulin resistance in both peri- and postmenopausal controls, compared with baseline. Nevertheless, no significant differences were observed in any of the glucose or lipid metabolism indicators at baseline and follow-up, as well as changes from baseline levels between menopausal women with and without prior menstrual disorders. Conclusions HRT shows more obvious within-group improvements in glucose and lipid metabolism in controls, but there is no significant between-group difference. Further prospective studies are required for confirmation

    Pyrethroid Pesticide Exposure and Risk of Primary Ovarian Insufficiency in Chinese Women

    No full text
    Pyrethroids are a class of widely used insecticides. Female animal studies suggested that pyrethroid exposure impaired ovarian function, which resulted in similar symptoms of primary ovarian insufficiency (POI). However, it is still unknown whether this association applies to women. In this case-control study, a total of 172 POI patients and 247 control women were recruited in Zhejiang, China. The urinary concentrations of metabolites of pyrethroids, 3-phenoxybenzoic acid (3-PBA) and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), as well as the serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and anti-Mullerian hormone (AMH) were determined. The associations of pyrethroid metabolites with POI and POI-related hormones were accessed using unconditional logistic regression. Higher urinary levels of 3-PBA were significantly associated with increased risk of POI [adjusted odds ratio (OR) = 2.344, 95% CI: 1.193–4.607 for the highest vs lowest quartile of 3-PBA, <i>p</i> = 0.013]. Stratified analyses showed that each log increase in urinary 3-PBA concentration was significantly associated with an induction in odds of 51.0% being in the highest quartile of FSH and 28.6% being in the highest quartile of LH levels, whereas a 25.9% reduction in odds of being in the highest quartile of AMH levels (All <i>p</i> for trend <0.05). To our knowledge, this is the first case-control study to report an association of pyrethroid exposure with increased risk of POI in women
    corecore