45 research outputs found

    Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape

    No full text
    Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome

    Leptosphaeria maculans effectors involved in the oilseed rape systemic colonization.

    No full text
    The stem canker disease, caused by Leptosphaeria maculans, is one of the most devastating diseases of oilseed rape (canola). It colonizes the plant in two stages: a short and early colonisation stage corresponding to cotyledon or leaf colonisation, and a late colonisation stage during which the fungus colonises systemically and symptomlessly the plant during several months before stem canker appears. To date, determinants of the late colonisation stage remain poorly understood. By a transcriptomic approach, we previously identified two waves of effector candidate expression during the early and late colonisation stages (Gervais et al, 2016). The late effector candidates are located in gene-rich genomic regions, whereas the early effector genes are located in gene-poor regions of the genome. Among the late effector candidates identified, we selected 6 genes for further characterization. We created mutants silenced for these effector candidates. For one of these genes, its expression level correlated negatively with the size of the necrosis observed in the stem. The identification of new effector genes would contribute to the identification of new resistance genes specific to these effectors. To easily identify matching resistance genes in oilseed rape, we created transgenic isolates expressing these 6 late effectors at the early steps of infection to provide medium-throughput strategies to screen more efficiently different cultivars. Preliminary results indicate that some cultivars with adult resistance were more resistant to these transgenic isolates in cotyledon assays. With this approach, we also identified a cultivar carrying a specific resistance to one these 6 effector candidates. Reference Gervais, J., Plissonneau, C., Linglin, J., Meyer, M., Labadie, K., Cruaud, C., Fudal, I., Rouxel, T. and Balesdent, M.H. (2016) Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. Mol. Plant Pathol
    corecore