2,222 research outputs found

    Astrocyte elevated gene-1 (AEG-1) is a marker for aggressive salivary gland carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Astrocyte elevated gene-1 (AEG-1) is associated with tumorigenesis and progression in diverse human cancers. The present study was aimed to investigate the clinical and prognostic significance of AEG-1 in salivary gland carcinomas (SGC).</p> <p>Methods</p> <p>Real-time PCR and western blot analyses were employed to examine AEG-1 expression in two normal salivary gland tissues, eight SGC tissues of various clinical stages, and five pairs of primary SGC and adjacent salivary gland tissues from the same patient. Immunohistochemistry (IHC) was performed to examine AEG-1 protein expression in paraffin-embedded tissues from 141 SGC patients. Statistical analyses was applies to evaluate the diagnostic value and associations of AEG-1 expression with clinical parameters.</p> <p>Results</p> <p>AEG-1 expression was evidently up-regulated in SGC tissues compared with that in the normal salivary gland tissues and in matched adjacent salivary gland tissues. AEG-1 protein level was positively correlated with clinical stage (<it>P </it>< 0.001), T classification (<it>P </it>= 0.008), N classification (<it>P </it>= 0.008) and M classifications (<it>P </it>= 0.006). Patients with higher AEG-1 expression had shorter overall survival time, whereas those with lower tumor AEG-1 expression had longer survival time.</p> <p>Conclusions</p> <p>Our results suggest that AEG-1 expression is associated with SGC progression and may represent a novel and valuable predictor for prognostic evaluation of SGC patients.</p

    A Cascaded Approach for ultraly High Performance Lesion Detection and False Positive Removal in Liver CT Scans

    Full text link
    Liver cancer has high morbidity and mortality rates in the world. Multi-phase CT is a main medical imaging modality for detecting/identifying and diagnosing liver tumors. Automatically detecting and classifying liver lesions in CT images have the potential to improve the clinical workflow. This task remains challenging due to liver lesions' large variations in size, appearance, image contrast, and the complexities of tumor types or subtypes. In this work, we customize a multi-object labeling tool for multi-phase CT images, which is used to curate a large-scale dataset containing 1,631 patients with four-phase CT images, multi-organ masks, and multi-lesion (six major types of liver lesions confirmed by pathology) masks. We develop a two-stage liver lesion detection pipeline, where the high-sensitivity detecting algorithms in the first stage discover as many lesion proposals as possible, and the lesion-reclassification algorithms in the second stage remove as many false alarms as possible. The multi-sensitivity lesion detection algorithm maximizes the information utilization of the individual probability maps of segmentation, and the lesion-shuffle augmentation effectively explores the texture contrast between lesions and the liver. Independently tested on 331 patient cases, the proposed model achieves high sensitivity and specificity for malignancy classification in the multi-phase contrast-enhanced CT (99.2%, 97.1%, diagnosis setting) and in the noncontrast CT (97.3%, 95.7%, screening setting)

    Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages

    Get PDF
    International audienceReactive Oxygen/Nitrogen Species (ROS/RNS) produced by macrophages inside their phagolysosomes are closely related to immunity and inflammation by being involved in the removal of pathogens, altered cells, etc. The existence of a homeostatic mechanism regulating the ROS/RNS amounts inside phagolysosomes has been invoked to account for the efficiency of this crucial process but this could never be unambiguously documented. In this work, intracellular electrochemical analysis with platinized nanowires electrodes (Pt-NWEs) allowed monitoring ROS/RNS effluxes with sub-millisecond resolution from individual phagolysosomes randomly impacting onto the electrode inserted inside a living macrophage. This evidenced for the first time that the consumption of ROS/RNS by their oxidation at the nanoelectrode surface stimulates the production of significant ROS/RNS amounts inside phagolysosomes. These results established the existence of the long-time postulated ROS/RNS homeostasis and allowed quantifying its kinetics and efficiency. ROS/RNS concentrations may then be maintained at sufficiently high levels for sustaining proper pathogen digestion rates without endangering the macrophage internal structures

    Bacterial Community Diversity and Screening of Growth-Affecting Bacteria From Isochrysis galbana Following Antibiotic Treatment

    Get PDF
    Algal cultures are generally co-cultures of algae and bacteria, especially when considering outdoor cultivation. However, the effects of associated bacteria on algal growth remain largely unexplored, particularly in the context of Isochrysis galbana. In the present study, we investigated the effects of antibiotic on the growth of I. galbana and its associated bacterial community. We found advantageous responses of I. galbana to antibiotic exposure, evidenced by the increased growth, and the maximal photochemical efficiency of PSII (Fv/Fm). Since antibiotics can cause major disturbances within bacterial community, we further conducted 16S rDNA amplicon sequencing to determine the changes of bacterial community diversity following antibiotic treatment. We found that antibiotic treatment considerably and negatively affected the abundance and diversity of bacterial community, and 17 significantly decreased bacterial species in the antibiotic-treated medium, including Pseudomonas stutzeri, were identified. Further co-culture experiments revealed that P. stutzeri inhibited the growth of I. galbana, and the inhibitory activity was retained in the cell-free bacterial filtrate. These results indicated that the negative effect of bacteria was not exclusively transmitted through contact with I. galbana but could be also mediated via secretory compounds. Taken together, our findings not only fully characterized the bacterial community associated with I. galbana and how the bacterial community changed in response to antibiotic perturbations, but also provided a valuable information about the interactions between I. galbana and its associated bacteria, which might help improve the yield, and quality of I. galbana during its cultivation processes

    Identification of ankle sprain motion from common sporting activities by dorsal foot kinematics data

    Get PDF
    This study presented a method to identify ankle sprain motion from common sporting activities by dorsal foot kinematics data. Six male subjects performed 300 simulated supination sprain trials and 300 non-sprain trials in a laboratory. Eight motion sensors were attached to the right dorsal foot to collect three-dimensional linear acceleration and angular velocity kinematics data, which were used to train up a support vector machine (SVM) model for the identification purpose. Results suggested that the best identification method required only one motion sensor located at the medial calcaneus, and the method was verified on another group of six subjects performing 300 simulated supination sprain trials and 300 non-sprain trials. The accuracy of this method was 91.3%, and the method could help developing a mobile motion sensor system for ankle sprain detection
    corecore