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Dear Editor, 

Here is the specific reply to reviewers, thank you. 

Reviewer #1:  

 

This is a good paper that describes the sprain motion detection system using the foot 

kinematic signals and the machine learning tool (SVM). 

The methodology is well presented, and the identification/classification results are 

acceptable. 

The discussion section is appropriate to explain the incorrect classifications in the 

supination sprain trials. 

 

There are still some places need to improve: 

(1) In Page 4, Paragraph 2, Line 3: the citation (Chan et al. 2008) is a mistake-- I guess 

it should be (Chan et al. 1998), as the reference list does not include (Chan et al. 

2008). 

 Corrected. The reference should be Chan et al. 2008 which was typed wrongly as 

1998 in the reference list. 

 

(2) In Page 7, Paragraph 1, Line 6: it is better to rewrite the symbol for the kernel 

function "k" as "K(·)".  

 Corrected as instructed. 

 

(3) In Page 7, Paragraph 1, Line 7: the inline equation "K(x_i,x) = 

<PHI>(x_i)<PHI>(x_j)" should be written as "K(x_i,x_j) = <PHI>(x_i)<PHI>(x_j)". 

 Corrected as instructed. 

 

(4) In Page 9, Section Results, Paragraph 1, Line 5: the decimal fraction of the 

threshold b=0.46397071 could be shorten.  

 The decimal fraction of the threshold was shorten. 

 

It is better to interpret the physical meaning of such a threshold value in the 

experiment, and how it affects the classification results (accuracy). 

 Thank you for the question. The threshold ‘b’ is the bias term which does not 

*Revision Notes



affect the accuracy much if there are enough features. As we have 521 supports 

vectors in the model, this bias term does not alter much in the accuracy.  

 

(5) The eyes of the subjects in Figure 2 should be masked. 

 Ammended. The eyes of the subject were masked. 

 

Reviewer #2:  

 

General comment: 

This is a well-written and interesting paper. This study aimed to present an 

identification system to detect sprain motion. The part of materials and methods 

and results should be described in more detail, especially how to perform the 

validation test.  

 Thank you for your comments. Some sentences were added to the SVM training 

and validation part for better understanding: 

‘This process allowed the waveform characteristics being extracted for the 

training. Only low frequency components were fed into the Support Vector 

Machine, while high frequency noises were eliminated.’ 

‘The Support Vector Machine then generated the model which consists of a 

hyperplane to separate the two sets of data: sprain motion and common sporting 

activities.’ 

‘The same data collection procedure for the aforementioned SVM training 

session was done. Each subject performed a total of 100 trials: 50 trials of 

simulated supination sprain motion (Figure 2) and 50 trials of non-sprain motion. 

One second of sensor data from each trial was then trimmed and converted to 

frequency domain using DFT. Processed data was then fed into the trained SVM 

model. The accuracy was calculated by the percentage of trials being correctly 

identified.’ 

Besides, this article has well organization in the context and clear explanation in 

discussion and conclusion. It would be helpful to provide more information if the 

author could take more efforts on description of contribution in current studies and 

compare the result with other publication. 



 

 Thank you for the suggestion. Reference of Shi et al. 2009 and Bourke et al. 2007 

were added. They are similar studies working on identifying fall motion from normal 

motions using accelerometers. Their accuracy is comparable with our study. 

 

Specific comment: 

1.Page 8, Materials and method section. It's suggested to provide more detail 

information about "Support Vector Machine verification". Author should try to 

illustrate the relation between SVM and DFT.  

 Thank you for the suggestion. Some sentences were added to the SVM training 

and validation part for better understanding, relation between SVM and DFT was 

also stated in the first sentence: 

‘This process allowed the waveform characteristics being extracted for the 

training. Only low frequency components were fed into the Support Vector 

Machine, while high frequency noises were eliminated.’ 

‘The Support Vector Machine then generated the model which consists of a 

hyperplane to separate the two sets of data: sprain motion and common sporting 

activities.’ 

‘The same data collection procedure for the aforementioned SVM training session 

was done. Each subject performed a total of 100 trials: 50 trials of simulated 

supination sprain motion (Figure 2) and 50 trials of non-sprain motion. One second 

of sensor data from each trial was then trimmed and converted to frequency domain 

using DFT. Processed data was then fed into the trained SVM model. The accuracy 

was calculated by the percentage of trials being correctly identified.’2.Page 10, 

Discussion section. Insufficient comparison of the relation between simulated 

supination sprains and real sprain case. It's the major limitation because that real 

sprain is not ethical and is not reproducible in laboratory. Therefore, if it can be 

acted as an alarm to activate the protective mechanism for the intelligent sprain-free 

shoe system in the future, additional description and verification are necessary. 

 

 Discussion on the realtion between simulated supination sprains and real sprain 

cases were added. 

‘We believed that those simulated supination sprain motions are less vigorous 

than the real sprain motions. This means that the simulated sprain motion have 



measured linear acceleration and angular velocity more similar to that of 

common sporting motions. Thus, we believed that as this classification model can 

classify simulated sprain motion from common sporting motions in 91.3% 

accuracy, the system can work at a similar or even better accuracy in real sprain 

classification. However, this belief can only be proved by manufacturing 

prototype which will be applied directly to athletics during training and 

competitions.’ 

 

Thank you very much for your comments. 

 

Best regards, 

Yue Yan CHAN 
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Abstract 

This study presented a method to identify ankle sprain motion from common 

sporting activities by dorsal foot kinematics data. Six male subjects performed 300 

simulated supination sprain trials and 300 non-sprain trials in a laboratory. Eight 

motion sensors were attached to the right dorsal foot to collect three-dimensional 

linear acceleration and angular velocity kinematics data, which were used to train up 

a Support Vector Machine (SVM) model for the identification purpose. Results 

*Manuscript
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suggested that the best identification method required only one motion sensor 

located at the medial calcaneus, and the method was verified on another group of six 

subjects performing 300 simulated supination sprain trials and 300 non-sprain trials. 

The accuracy of this method was 91.3%, and the method could help developing a 

mobile motion sensor system for ankle sprain detection. 

 

Introduction 

Ankle sprain is one of the most common ankle injuries in sports (Fong et al., 2007), 

in which human reflex response may not be fast enough to accommodate the sudden 

explosive motion and prevent the injury (Fong et al, 2009). In order to prevent ankle 

sprain injury, taping and bracing are commonly used by athletes (Cordova et al., 

2007). However, these methods restrict the freedom of ankle joint motion and hence 

affect the performance in sports (Hume & Gerrard, 1998). Recently, an intelligent 

sprain-free shoe that protects the ankle from spraining injury has been developed 

(Chan et al., 2006). It does not restrict ankle joint motion and allows freedom of 

movement in normal condition, meanwhile, it provides support and protects the 

athlete from injury when the ankle is in danger to sustain a supination ankle sprain. 

For this innovative design, an identification system has to be developed to monitor 

the ankle joint biomechanics and detect if there is an ankle sprain motion, and 
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ultimately actuate the correction mechanism to protect the ankle joint from 

sustaining an injury.  

 

Fong and his colleagues (2008) developed a three-pressure-sensor (3PS) system on 

insole to monitor the ankle supination torque for the abovementioned purpose. The 

system worked well in walking, running, cutting, vertical jump-landing and 

stepping-down motions. However, the development of the system did not involve 

ankle sprain motion, which could not be performed on a flat force plate in order to 

capture the essential kinetics data for ankle supination torque calculation. Therefore, 

we comment that while the previous system worked well as a mobile system to 

monitor ankle supination torque, it might not be applicable to estimate the joint 

torque and identify a spraining motion during a real injury event. 

 

This paper presents an identification system to detect ankle supination sprain motion. 

Gyrometers and accelerometers were used for collecting dorsal foot kinematics data 

for training up a Support Vector Machine (SVM) which serves as an identification 

system, which has been verified to have 91.3% accuracy. The method has been 

previously applied to identify different human motions, such as close-eye activities 
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(Hsieh et al., 2007), fall detection (Shi et al., 2009) and gait pattern of young and old 

people (Begg & Kamruzzaman, 2005).  

The identification method would contribute as an essential part of the sprain-free 

shoe as a new and innovative prophylactic apparel for sports. 

 

Methods 

Data collection 

Six male subjects (age = 21.2 ± 1.7 yr, height = 1.72 ± 0.05 m, body mass = 61.5 ± 

3.1 kg, foot length = 255.3 ± 10.6 mm) were recruited from the athletic team of The 

Chinese University of Hong Kong. Subjects with previous ankle injury were 

excluded. Anterior drawer test and talar tilt test were performed on both feet of the 

subjects to ensure there was no abnormality for their ankles. The university ethics 

committee approved the study.  

 

Each subject performed a total of 100 trials: 50 trials of simulated supination sprain 

motion (Figure 2) and 50 trials of non-sprain motion. Simulated supination sprain 

motions were performed on the supination sprain simulator (Chan et al., 2008) 

which simulated ankle spraining motion with different combinations of inversion 

and plantarflexion (I: total inversion / II: 23 degree supination / III: 45 degrees 
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supination / IV: 67 degrees supination / V: total plantarflexion).  These inversion 

and plantarflexion angles were chosen to allow a wide range of collected data. Each 

of the above inversion and plantarflexion angles contributed 10 trials respectively. 

The sequences of data collection at different angles were randomly assigned. Each 

subject placed their feet on the rotating disc of the supination sprain simulator with 

shoulder width apart. They were instructed to stand with weight evenly distributed 

on both feet. Either left or right platform fell in each trial randomly. Motion sensors 

were attached on the right feet only, and thus only the trials with right foot 

perturbation were collected. Ten trials of right foot perturbations were performed at 

each angle. Between each trial, subjects were allowed to have sufficient rest to 

prevent fatigue which was reported verbally by the subject. After collecting data for 

simulated supination sprain motion, non-sprain motions data were collected, 

including walking, running, cutting, stepping-down and vertical jump-landing. Each 

motion contributed 10 trials. These motions were chosen because they are common 

in human daily activities. The sequences of data collection of different non-sprain 

motions were random. In walking and running trials, subjects were requested to 

walk or run at their preferred speed for five consecutive strides. Data collection 

started from the first stride. For cutting trials, subjects were requested to run for five 

consecutive strides with full speed and perform a cutting motion of 90 degrees with 
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their right limb. In stepping-down trials, subjects stepped down from a 30cm high 

step with their right limb landing first. For vertical jump-landing, subjects were 

requested to perform vertical jump-landing with both legs to their maximum height. 

Subjects were allowed to rest between each trial. 

 

During data collection, eight wired motion sensors (Sengital Ltd., Hong Kong, China) 

were attached to the right foot at hallux, first proximal metatarsal head, fifth distal 

metatarsal head, fifth proximal metatarsal head, medial calcaneus, posterior 

calcaneus, lateral malleolus and tibia (Figure 1). The sensors were attached by the 

same research staff who has adequate knowledge to identify these anatomical 

landmarks throughout the study to ensure consistency. The size of the motion sensor 

was 20mm x 18mm x 6mm. Each motion sensor was then connected to a single 

printed circuit board (PCB) with a size of 50 x 25 x 15mm. The PCB was responsible 

for the communication between its dedicated sensor and the computer for data 

collection. Each motion sensor consists of a tri-axial accelerometer and gyrometer, 

collecting three-dimensional linear acceleration (Ax, Ay, Az) and three dimensional 

angular velocity (Gx, Gy, Gz,) at a sampling frequency of 500Hz. This sampling 

frequency is much higher when compared with the sensors being used in some other 

previous studies, ranging from 20 to 200Hz (Bernmark & Wiktorin, 2002; Coley et 
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al., 2007), as to collect adequate data during vigorous sprain motions which happen 

within 50ms (Fong et al, 2009). 

 

Support Vector Machine for classification of human motion 

Support Vector Machine (SVM) is one of the techniques in statistical learning 

theory for classification. SVM was divided into two main parts: training and 

verification (Vapnik, 1995). 

 

Training the Support Vector Machine 

The learning theory of the Support Vector Machine can be expressed as a function  

 where . This function maps patterns x to the classification y. 

The function  can be expressed as: 

           (1) 

where N is the number of training patterns,  is training pattern i with its 

classification as  and b are learned weights. K(·) is a kernel function 

 (Cristianini & Shawe-Taylor, 2000), which could be any 

symmetric kernel function that satisfies the Mercer’s condition corresponding to a 

dot product in some feature space (Bernhard et al., 1998).  with  

are sets of support vectors. The surface  is a hyperplane through the 
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feature space defined by the kernel function. Optimal parameters  and b are 

selected to minimize the number of incorrect classifications by maximizing the 

distance of the support vectors to the hyperplane .  indicates a 

simulated supination sprain trial, where  indicates a non-sprain trial.  

Maximize: 

    (2) 

Subject to: 

  (3) 

 

The constant C denotes the penalty to errors, therefore it affects the tolerance to 

incorrect classifications. After solving the equation (2) and finding , we can use 

any other support vector  to find b. 

 

In the training process, a value of signal strength (unitless) of each of the eight 

motion sensors was calculated to quantify its capacity to identify the spraining and 

non-spraining motions. The signal strength ranges from 0 to 1024, while higher 

signal strength means that the signal could better identify the two group of motions. 

SVM training was done with the data from the sensor of highest signal strength 

value. Six subjects contributed to 600 trials, including 300 simulated supination 
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sprain and 300 non-sprain trials. For each trial, one second of data of all the six 

channels  was trimmed. The data was then converted to 

frequency domain by discrete Fourier transform (DFT). This process allowed the 

waveform characteristics being extracted for the training. Only low frequency 

components were fed into the Support Vector Machine, while high frequency noises 

were eliminated. Similar procedure was adopted in previous studies of fall detection 

(Shi et al., 2009). The conversion was done by Matlab (version R2007a, MathWorks, 

Inc., Natick, Massachusetts, USA). The data in frequency domain was then used for 

the training process of the Support Vector Machine (Joachims, 1999). The Support 

Vector Machine then generated the model which consists of a hyperplane to separate 

the two sets of data: sprain motion and common sporting activities. 

 

Support Vector Machine verification  

Another six male subjects (age = 22.0 ± 1.7 yr, height = 1.75 ± 0.04 m, body mass = 

69.7 ± 2.8 kg, foot length = 262.0 ± 9.9 mm) were recruited to perform the 

validation test. The same data collection procedure for the aforementioned SVM 

training session was done. Each subject performed a total of 100 trials: 50 trials of 

simulated supination sprain motion (Figure 2) and 50 trials of non-sprain motion. 

One second of sensor data from each trial was then trimmed and converted to 



 10 

 

frequency domain using DFT. Processed data was then fed into the trained SVM 

model. The accuracy was calculated by the percentage of trials being correctly 

identified. The trained SVM model was considered to be effective when the 

accuracy achieved 90% (Lau et al., 2008). If the training is not successful, the 

training process would be performed again with the data from sensor of second 

highest signal strength. If the SVM training of using single sensor data was not 

successful, combinations of two or more sensors would be performed. This 

increased the number of support vectors chosen, and thus the accuracy of the 

identification method. 

 

Results 

The signal strength of each sensor was shown in Table 1. As the signal strength of 

medial calcaneus is the highest, the data obtained from sensor located at the medial 

calcaneus was selected to train up the SVM model. After training the SVM with the 

600 trials of data from sensor located at the medial calcaneus, 521 support vectors, 

with threshold b = 0.46, were selected to build the SVM model in equation (1) for 

classification.  

 

The other 600 data were then fed to the SVM model for validation. Among the data, 
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548 were correctly classified while 52 were classified incorrectly. The accuracy on 

the test set was 91.3%, therefore successful identification was considered achieved.  

As the accuracy is higher than 90%, the medial calcaneus was chosen as the sensor 

position. 

 

The details of the verification result were shown in Table 2 and 3. Within the 300 

simulated supination sprain trials, the SVM model could correctly identify 291 trials. 

Among the nine simulated supination sprain trials that cannot be classified correctly, 

eight of the trials are recorded when the fall platform angle was 90 degrees, while 

the other one trial was with platform angle set at 67 degrees. All the simulated 

supination sprain trials with platform angle at zero degree, 23 degrees, 45 degrees 

were identified correctly. For the 300 non-sprain trials, 43 trials were identified 

incorrectly as false alarm. Among the five non-sprain motions, stepping-down, 

vertical jump-landing contributed to 32.6%, 25.6% and 25.6% of false alarm 

respectively.  

 

Discussion 

From the result shown in Table 2, our developed method correctly identified 97.0% 

of the simulated ankle supination sprain motions. Our result is encouraging, as it is 
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comparable to previous successful studies achieving 95-100% accuracy in fall 

identification (Shi et al., 2009 and Bourke et al., 2007). Among the non-sprain 

motions, 14.3% false alarm was recorded – these common sporting motions were 

misidentified as hazardous. We comment that this is acceptable as the method as a 

whole is conservative – it provides unnecessary protection to 14.3% of the trials 

which does not need protection, and it fails to provide such protection to only 3% of 

the trials which needs protection. 

 

In this research, one second of data was extracted from each trial. This time frame 

was chosen because it covered at least one cycle of motion in both the simulated 

supination motion and non-sprain motion and served as a good start to test the 

feasibility for training up the identification method. However, as real sprain motion 

occurs within 50ms, in order to serve as a real-time alarm system, it is essential to 

trim down the time duration, or the window size, but keep obtaining adequate data 

for the identification procedure with good accuracy. More data analysis work should 

be done in the future to find out the minimal and workable window size in order to 

catch up and actuate the corrective function of the proposed sprain-free shoe. 

 

Within all the incorrectly identified simulated supination sprain trials, 8 out of 9 
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were found when the platform angle was set at 90 degrees. When platform angles 

were set at 90 degrees, the ankle mainly underwent a plantarflexion motion which 

was common in normal many common sporting activities, such as running, walking, 

jumping and walking downstairs. Also, simulated supination sprain motion was in 

sub-injury level, which was less vigorous than real sprain, therefore some trials were 

misclassifying with platform angle set at 90 degrees. 

 

The unit of the sensor value is arbitrary and has no actual physical meaning. It is not 

necessary to calibrate the sensor for the classification purpose because the sensor 

data was fed directly to train up the Support Vector Machine (SVM) and the same 

type of sensor were used in the validation stage. Filter such as Butterworth low pass 

filter and critically damped filter were commonly used in smoothing motion sensor 

data (Erer, 2007). However, we decided not to apply filter in this research because 

the waveform of the filtered data using a Butterworth low pass filter with 20Hz 

generally showed no change when compare with the raw data. The simplified 

process utilizing unfiltered raw data is important, because it saved processing time 

and facilitated the development of a quick and real-time identification method. 

 

All the supination sprain data were biomechanically simulated but not real sprain 
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incidents, since performing real injury trials in laboratory is unethical and also not 

practical. We could only define them as sub-injury trials but not ligamentous sprain 

injury trials. Although these sub-injury trials were less vigorous, such motions are 

not undesirable in a real sporting situation as the ankle joint is approaching an 

un-returnable excessive supination orientation which may lead to ligamentous sprain 

injury. Besides, we believed that those simulated supination sprain motions are less 

vigorous than the real sprain motions. This means that the simulated sprain motion 

have measured linear acceleration and angular velocity more similar to that of 

common sporting motions. Thus, we believed that as this classification model can 

classify simulated sprain motion from common sporting motions in 91.3% accuracy, 

the system can work at a similar or even better accuracy in real sprain classification. 

However, this belief can only be proved by manufacturing prototype which will be 

applied directly to athletics during training and competitions. 

 

The identification method now included trials of five types of simulated supination 

sprain motions and five types of non-sprain common sporting sporting motions. It 

covered most of the common motions in daily life. Therefore the model is good for 

identification of ankle sprain motion during common sporting activities. However, it 

is also possible to develop some sport-specific ankle sprain detection system in the 
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future to further increase the accuracy. This can be done by including some special 

movement of a specific sport during SVM training.  

 

In this paper, a wired version of sprain identification method was developed. In the 

near future, we are going to develop a wireless version prototype. The SVM model 

can be built in on a PCB with DC power supply. The PCB can be located near the 

ankle, so that the system can become wireless. Real time recognition is possible in 

the future development by applying sliding window for data trimming. Sliding 

window allows real time trimming of data at different time point. However, the size 

of the window, therefore number of data required for classification of simulated 

supination motion, has to be further investigated. The final process time for real time 

classification of the system would mostly depend on the window size and also the 

performance of the hardware on the PCB. 

 

Conclusion 

This research introduces a method to classify sub-injury ankle supination sprain 

motions from non-sprain sporting motions using one motion sensor sampling at 

500Hz with 91.3% accuracy. Future work of the study includes minimize the 

window size, therefore the time frame for real time detection, this is important in 
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reducing the processing time for classification. The sampling frequency of the 

motion sensors should be minimized, this can reduce the cost of sensors, which is 

currently US$100 each. This can also minimize the amount of data to be processed. 

Hence, the time for data processing can be further reduced to make real time 

classification more feasible. In the near future, the whole system can be built with 

only one motion sensor at lower sampling frequency with a PCB with trained SVM 

model and DC power supply at a low cost. 
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Figure 1 – Eight motion sensors attached on the right foot 

 

Figure 2 – Experimental setup for data collection on ankle simulated sprain. 

Figure Legends



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/bm/download.aspx?id=326373&guid=17eea095-a320-4257-b18a-55050335719a&scheme=1
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Table 1 – Signal strength at different sensor position 

Sensor position Signal strength
#
 (Standard deviation)(unitless) 

Hallux 431.6 (9.4) 

First proximal metatarsal head 436.9 (10.9) 

Fifth distal metatarsal head 418.7 (12.7) 

Fifth proximal metatarsal head 381.0 (10.6) 

Medial calcaneus 464.1 (11.8) 

Posterior calcaneus 426.9 (10.1) 

Lateral malleolus 417.7 (12.1) 

Tibia 431.6 (10.7) 
#
Signal strength ranges from 0 (weakest) -1024 (strongest) 

 

Table 2 – Results of verification of the Support Vector Machine model. 

  
Number of correctly 

identified trials 

Number of incorrectly 

identified trials 

Simulated supination sprain trials 291 (97.0%) 9 (3.0%) 

Common sporting trials 257 (85.7%) 43 (14.3%) 

Tables
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Table 3 – Number of incorrect identified trials during the verification process. 

   #1 #2 #3 #4 #5 #6 Sub-total Total 

Simulated 

supination 

sprain trials 

0 degree - - - - - - 0 

9 

23 degrees - - - - - - 0 

45 degrees - - - - - - 0 

67 degrees - - - 1 - - 1 

90 degrees - - 2 5 1 - 8 

Common 

sporting trials 

Cutting - 1 2 2 - 6 11 

43 

Stepping-down - 6 - 5 - 3 14 

Vertical 

jump-landing 
- 7 4 - - - 11 

Running - - 2 - - - 2 

Walking - 5 - - - - 5 
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