942 research outputs found

    The conserved aromatic residue W-122 is a determinant of potyviral coat protein stability, replication, and cell-to-cell movement in plants

    Get PDF
    Coat proteins (CPs) play critical roles in potyvirus cell-to-cell movement. However, the underlying mechanism controlling them remains unclear. Here, we show that substitutions of alanine, glutamic acid, or lysine for the conserved residue tryptophan at position 122 (W-122) in tobacco vein banding mosaic virus (TVBMV) CP abolished virus cell-to-cell movement in Nicotiana benthamiana plants. In agroinfiltrated N. benthamiana leaf patches, both the CP and RNA accumulation levels of three W-122 mutant viruses were significantly reduced compared with those of wild-type TVBMV, and CP accumulated to a low level similar to that of a replication-deficient mutant. The results of polyprotein transient expression experiments indicated that CP instability was responsible for the significantly low CP accumulation levels of the three W-122 mutant viruses. The substitution of W-122 did not affect CP plasmodesmata localization or virus particle formation; however, the substitution significantly reduced the number of virus particles. The wild-type TVBMV CP could complement the reduced replication and abolished cell-to-cell movement of the mutant viruses. When the codon for W-122 was mutated to that for a different aromatic residue, phenylalanine or tyrosine, the resultant mutant viruses moved systemically and accumulated up to 80% of the wild-type TVBMV level. Similar results were obtained for the corresponding amino acids of W-122 in the watermelon mosaic virus and potato virus Y CPs. Therefore, we conclude that the aromatic ring in W-122 in the core domain of the potyviral CP is critical for cell-to-cell movement through the effects on CP stability and viral replication.Peer reviewe

    Arsenic and Fluoride Exposure in Drinking Water: Children’s IQ and Growth in Shanyin County, Shanxi Province, China

    Get PDF
    BACKGROUND: Recently, in a cross-sectional study of 201 children in Araihazar, Bangladesh, exposure to arsenic (As) in drinking water has been shown to lower the scores on tests that measure children’s intellectual function before and after adjustment for sociodemographic features. OBJECTIVES: We investigated the effects of As and fluoride exposure on children’s intelligence and growth. METHODS: We report the results of a study of 720 children between 8 and 12 years of age in rural villages in Shanyin county, Shanxi province, China. The children were exposed to As at concentrations of 142 ± 106 μg/L (medium-As group) and 190 ± 183 μg/L (high-As group) in drinking water compared with the control group that was exposed to low concentrations of As (2 ± 3 μg/L) and low concentrations of fluoride (0.5 ± 0.2 mg/L). A study group of children exposed to high concentrations of fluoride (8.3 ± 1.9 mg/L) but low concentrations of As (3 ± 3 μg/L) was also included because of the common occurrence of elevated concentrations of fluoride in groundwater in our study area. A standardized IQ (intelligence quotient) test was modified for children in rural China and was based on the classic Raven’s test used to determine the effects of these exposures on children’s intelligence. A standardized measurement procedure for weight, height, chest circumference, and lung capacity was used to determine the effects of these exposures on children’s growth. RESULTS: The mean IQ scores decreased from 105 ± 15 for the control group, to 101 ± 16 for the medium-As group (p < 0.05), and to 95 ± 17 for the high-As group (p < 0.01). The mean IQ score for the high-fluoride group was 101 ± 16 and significantly different from that of the control group (p < 0.05). Children in the control group were taller than those in the high-fluoride group (p < 0.05); weighed more than the those in the high-As group (p < 0.05); and had higher lung capacity than those in the medium-As group (p < 0.05). CONCLUSIONS: Children’s intelligence and growth can be affected by high concentrations of As or fluoride. The IQ scores of the children in the high-As group were the lowest among the four groups we investigated. It is more significant that high concentrations of As affect children’s intelligence. It indicates that arsenic exposure can affect children’s intelligence and growth

    Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin is known playing a role in drug resistance. However, its role in bortezomib-mediated inhibition of growth and induction of apoptosis is unclear. There are conflicting reports for the effect of bortezomib on survivin expression, which lacks of a plausible explanation. Methods: In this study, we tested cancer cells with both p53 wild type and mutant/null background for the relationship of bortezomib resistance with survivin expression and p53 status using MTT assay, flow cytometry, DNA fragmentation, caspase activation, western blots and RNAi technology.</p> <p>Results</p> <p>We found that cancer cells with wild type p53 show a low level expression of survivin and are sensitive to treatment with bortezomib, while cancer cells with a mutant or null p53 show a high level expression of survivin and are resistant to bortezomib-mediated apoptosis induction. However, silencing of survivin expression utilizing survivin mRNA-specific siRNA/shRNA in p53 mutant or null cells sensitized cancer cells to bortezomib mediated apoptosis induction, suggesting a role for survivin in bortezomib resistance. We further noted that modulation of survivin expression by bortezomib is dependent on p53 status but independent of cancer cell types. In cancer cells with mutated p53 or p53 null, bortezomib appears to induce survivin expression, while in cancer cells with wild type p53, bortezomib downregulates or shows no significant effect on survivin expression, which is dependent on the drug concentration, cell line and exposure time.</p> <p>Conclusions</p> <p>Our findings, for the first time, unify the current inconsistent findings for bortezomib treatment and survivin expression, and linked the effect of bortezomib on survivin expression, apoptosis induction and bortezomib resistance in the relationship with p53 status, which is independent of cancer cell types. Further mechanistic studies along with this line may impact the optimal clinical application of bortezomib in solid cancer therapeutics.</p

    Observation of electron-antineutrino disappearance at Daya Bay

    Full text link
    The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle θ13\theta_{13} with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth_{\rm th} reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940±0.011(stat)±0.004(syst)R=0.940\pm 0.011({\rm stat}) \pm 0.004({\rm syst}). A rate-only analysis finds sin22θ13=0.092±0.016(stat)±0.005(syst)\sin^22\theta_{13}=0.092\pm 0.016({\rm stat})\pm0.005({\rm syst}) in a three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let

    Erratum to: Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles Through a Simple Hydrothermal Condition

    Get PDF
    <p>Abstract</p> <p>Nearly monodisperse cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid&#8211;solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.</p

    Potent antitumoral activity of TRAIL through generation of tumor-targeted single-chain fusion proteins

    Get PDF
    In an attempt to improve TRAIL's (tumor necrosis factor-related apoptosis-inducing ligand) tumor selective activity a variant was designed, in which the three TRAIL protomers are expressed as a single polypeptide chain (scTRAIL). By genetic fusion with a single-chain antibody fragment (scFv) recognizing the extracellular domain of ErbB2, we further equipped scTRAIL with tumor-targeting properties. We studied tumor targeting and apoptosis induction of scFv–scTRAIL in comparison with non-targeted scTRAIL. Importantly, the tumor antigen-targeted scTRAIL fusion protein showed higher apoptotic activity in vitro, with a predominant action by TRAIL-R2 signaling. Pharmacokinetic studies revealed increased plasma half-life of the targeted scTRAIL fusion protein compared with scTRAIL. In vivo studies in a mouse tumor model with xenotransplanted Colo205 cells confirmed greater response to the ErbB2-specific scTRAIL fusion protein compared with non-targeted scTRAIL both under local and systemic application regimen. Together, in vitro and in vivo data give proof of concept of higher therapeutic activity of tumor-targeted scFv–scTRAIL molecules. Further, we envisage that through targeting of scTRAIL, potential side effects should be minimized. We propose that scFv-mediated tumor targeting of single-chain TRAIL represents a promising strategy to improve TRAIL's antitumoral action and to minimize potential unwanted actions on normal tissues

    Upregulation of CENP-H in tongue cancer correlates with poor prognosis and progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Centromere protein H (CENP-H) is one of the fundamental components of the human active kinetochore. Recently, CENP-H was identified to be associated with tumorigenesis. This study was aimed to investigate the clinicopathologic significance of CENP-H in tongue cancer.</p> <p>Methods</p> <p>RT-PCR, real time RT-PCR and Western blot were used to examine the expression of CENP-H in tongue cancer cell lines and biopsies. CENP-H protein level in paraffin-embedded tongue cancer tissues were tested by immunohistochemical staining and undergone statistical analysis. CENP-H-knockdown stable cell line was established by infecting cells with a retroviral vector pSuper-retro-CENP-H-siRNA. The biological function of CENP-H was tested by MTT assay, colony formation assay, and Bromodeoxyuridine (BrdU) incorporation assay.</p> <p>Results</p> <p>CENP-H expression was higher in tongue cancer cell lines and cancer tissues (T) than that in normal cell and adjacent noncancerous tongue tissues (N), respectively. It was overexpressed in 55.95% (94/168) of the paraffin-embedded tongue cancer tissues, and there was a strong correlation between CENP-H expression and clinical stage, as well as T classification. CENP-H can predict the prognosis of tongue cancer patients especially those in early stage. Depletion of CENP-H can inhibit the proliferation of tongue cancer cells (Tca8113) and downregulate the expression of Survivin.</p> <p>Conclusion</p> <p>These findings suggested that CENP-H involves in the development and progression of tongue cancer. CENP-H might be a valuable prognostic indicator for tongue cancer patients within early stage.</p

    Two Odorant-Binding Proteins Mediate the Behavioural Response of Aphids to the Alarm Pheromone (E)-ß-farnesene and Structural Analogues

    Get PDF
    Abstract Background: Aphids are agricultural pests of great economical interest. Alternatives to insecticides, using semiochemicals, are of difficult applications. In fact, sex pheromones are of little use as aphids reproduce partenogenetically most of the time. Besides, the alarm pheromone, (E)-ß-farnesene for a great number of species, is difficult to synthesize and unstable in the environment. The search for novel semiochemicals to be used in population control can be efficiently approached through the study of the olfactory system at the biochemical level. Recently odorant-binding proteins (OBPs) have been shown to play a central role in olfactory recognition, thus becoming the target of choice for designing new semiochemicals. Methodology/Principal Findings: To address the question of how the alarm message is recognised at the level of OBPs, we have tested 29 compounds, including (E)-ß-farnesene, in binding assays with 6 recombinant proteins and in behaviour experiments. We have found that good repellents bind OBP3 and/or OBP7, while non repellents present different spectra of binding. These results have been verified with two species of aphids, Acyrthosiphon pisum and Myzus persicae, both using (E)-ß-farnesene as the alarm pheromone. Conclusions: Our results represent further support to the idea (so far convincingly demonstrated only in Drosophila) that OBPs are involved in decoding the chemical information of odorants and pheromones, and for the first time provide such evidence in other insect species and using wild-type insects. Moreover, the data offer guidelines and protocols for the discovery of potential alarm pheromones, using ligand-binding assays as a preliminary screening before subjecting selected compounds to behaviour tests
    corecore