8,057 research outputs found

    Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants

    Get PDF
    Cataloged from PDF version of article.Public attention to the food scandals raises an urgent need to develop effective and reliable methods to detect food contaminants. The current prevailing detections are primarily based upon liquid chromatography, mass spectroscopy, or colorimetric methods, which usually require sophisticated and time-consuming steps or sample preparation. Herein, we develop a facile strategy to assemble the vertically aligned monolayer of Au nanorods with a nominal 0.8 nm gap distance and demonstrate their applications in the rapid detection of plasticizers and melamine contamination at femtomolar level by surface-enhanced Raman scattering spectroscopy (SERS). The SERS signals of plasticizers are sensitive down to 0.9 fM concentrations in orange juices. It is the lowest detection limit reported to date, which is 7 orders of magnitude lower than the standard of United States (6 ppb). The highly organized vertical arrays generate the reproducible "SERS-active sites" and can be achieved on arbitrary substrates, ranging from silicon, gallium nitride, glass to flexible poly(ethylene naphthalate) substrates

    Study of J/ψJ/\psi and ψ(3686)Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψΣ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22

    Observation of an anomalous line shape of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} mass spectrum near the ppˉp\bar{p} mass threshold in J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-}

    Get PDF
    Using 1.09×1091.09\times10^{9} J/ψJ/\psi events collected by the BESIII experiment in 2012, we study the J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-} process and observe a significant abrupt change in the slope of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} invariant mass distribution at the proton-antiproton (ppˉp\bar{p}) mass threshold. We use two models to characterize the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} line shape around 1.85 GeV/c21.85~\text{GeV}/c^{2}: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85 GeV/c21.85~\text{GeV}/c^{2} with strong couplings to ppˉp\bar{p} final states or a narrow state just below the ppˉp\bar{p} mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a ppˉp\bar{p} molecule-like state or bound state with greater than 7σ7\sigma significance

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ13\theta_{13} with a sensitivity better than 0.01 in the parameter sin22θ13^22\theta_{13} at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
    corecore