2,206 research outputs found

    Predicting protein-ligand binding site using support vector machine with protein properties

    Full text link
    Identification of protein-ligand binding site is an important task in structure-based drug design and docking algorithms. In the past two decades, different approaches have been developed to predict the binding site, such as the geometric, energetic, and sequence-based methods. When scores are calculated from these methods, the algorithm for doing classification becomes very important and can affect the prediction results greatly. In this paper, the support vector machine (SVM) is used to cluster the pockets that are most likely to bind ligands with the attributes of geometric characteristics, interaction potential, offset from protein, conservation score, and properties surrounding the pockets. Our approach is compared to LIGSITE, LIGSITEcsc, SURFNET, Fpocket, PocketFinder, Q-SiteFinder, ConCavity, and MetaPocket on the data set LigASite and 198 drug-target protein complexes. The results show that our approach improves the success rate from 60 to 80 percent at AUC measure and from 61 to 66 percent at top 1 prediction. Our method also provides more comprehensive results than the others

    A comparison of neural classifiers for graffiti recognition

    Full text link

    Online support vector machine application for model based fault detection and isolation of HVAC system

    Full text link
    Abstract—Preventive maintenance plays an important role in Heating, Ventilation and Air Conditioning (HVAC) system. One cost effective strategy is the development of analytic fault detection and isolation (FDI) module by online monitoring the key variables of HAVC systems. This paper investigates realtime FDI for HAVC system by using online Support Vector Machine (SVM), by which we are able to train a FDI system with manageable complexity under real time working conditions. It is also proposed a new approach which allows us to detect unknown faults and updating the classifier by using these previously unknown faults. Based on the proposed approach, a semi unsupervised fault detection methodology has been developed for HVAC system

    Photoluminescence and lasing characteristics of single nonpolar GaN microwires

    Get PDF
    published_or_final_versio

    Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans

    Get PDF
    Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MultiNest, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MultiNest configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MultiNest is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report. Matches version accepted by JHE

    First Results from Lattice Simulation of the PWMM

    Get PDF
    We present results of lattice simulations of the Plane Wave Matrix Model (PWMM). The PWMM is a theory of supersymmetric quantum mechanics that has a well-defined canonical ensemble. We simulate this theory by applying rational hybrid Monte Carlo techniques to a naive lattice action. We examine the strong coupling behaviour of the model focussing on the deconfinement transition.Comment: v3 20 pages, 8 figures, comment adde

    Health services research in the public healthcare system in Hong Kong: An analysis of over 1 million antihypertensive prescriptions between 2004-2007 as an example of the potential and pitfalls of using routinely collected electronic patient data

    Get PDF
    <b>Objectives</b> Increasing use is being made of routinely collected electronic patient data in health services research. The aim of the present study was to evaluate the potential usefulness of a comprehensive database used routinely in the public healthcare system in Hong Kong, using antihypertensive drug prescriptions in primary care as an example.<p></p> <b>Methods</b> Data on antihypertensive drug prescriptions were retrieved from the electronic Clinical Management System (e-CMS) of all primary care clinics run by the Health Authority (HA) in the New Territory East (NTE) cluster of Hong Kong between January 2004 and June 2007. Information was also retrieved on patients’ demographic and socioeconomic characteristics, visit type (new or follow-up), and relevant diseases (International Classification of Primary Care, ICPC codes). <p></p> <b>Results</b> 1,096,282 visit episodes were accessed, representing 93,450 patients. Patients’ demographic and socio-economic details were recorded in all cases. Prescription details for anti-hypertensive drugs were missing in only 18 patients (0.02%). However, ICPC-code was missing for 36,409 patients (39%). Significant independent predictors of whether disease codes were applied included patient age > 70 years (OR 2.18), female gender (OR 1.20), district of residence (range of ORs in more rural districts; 0.32-0.41), type of clinic (OR in Family Medicine Specialist Clinics; 1.45) and type of visit (OR follow-up visit; 2.39). <p></p> In the 57,041 patients with an ICPC-code, uncomplicated hypertension (ICPC K86) was recorded in 45,859 patients (82.1%). The characteristics of these patients were very similar to those of the non-coded group, suggesting that most non-coded patients on antihypertensive drugs are likely to have uncomplicated hypertension. <p></p> <b>Conclusion</b> The e-CMS database of the HA in Hong Kong varies in quality in terms of recorded information. Potential future health services research using demographic and prescription information is highly feasible but for disease-specific research dependant on ICPC codes some caution is warranted. In the case of uncomplicated hypertension, future research on pharmaco-epidemiology (such as prescription patterns) and clinical issues (such as side-effects of medications on metabolic parameters) seems feasible given the large size of the data set and the comparability of coded and non-coded patients

    The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy.

    Get PDF
    MRI-based measurements used to diagnose progressive supranuclear palsy (PSP) typically lack pathologic verification and are not easy to use routinely. We aimed to develop in histologically proven disease a simple measure of the midbrain and pons on sagittal MRI to identify PSP

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
    corecore