24 research outputs found

    Shell we cook it? An experimental approach to the microarchaeological record of shellfish roasting

    Get PDF
    In this paper, we investigate the microarchaeological traces and archaeological visibility of shellfish cooking activities through a series of experimental procedures with direct roasting using wood-fueled fires and controlled heating in a muffle furnace. An interdisciplinary geoarchacological approach, combining micromorphology, FTIR (in transmission and ATR collection modes), TGA and XRD, was used to establish a baseline on the mineralogical transformation of heated shells from aragonite to calcite and diagnostic sedimentary traces produced by roasting fire features. Our experimental design focused on three main types of roasting procedures: the construction of shallow depressions with heated rocks (pebble cuvette experiments), placing shellfish on top of hot embers and ashes (fire below experiment), and by kindling short-lived fires on top of shellfish (fire above experiments). Our results suggest that similar shellfish roasting procedures will largely create microstratigraphic signatures of anthropogenically reworked combusted material spatially "disconnected" from the actual combustion locus. The construction of shallow earth ovens might entail an increased archaeological visibility, and some diagnostic signatures of in situ hearths can be obtained by fire below roasting activities. We also show that macroscopic visual modifications and mineralogical characterization of discarded shellfish might be indicative of specific cooking activities versus secondary burning.Max Planck Societyinfo:eu-repo/semantics/publishedVersio

    Ectopic Catalase Expression in Mitochondria by Adeno-Associated Virus Enhances Exercise Performance in Mice

    Get PDF
    Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT) was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 1012 vector genome particles per mouse. Three months later, we observed a ∼2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy) and ameliorate muscle disease

    Unilateral Carotid Body Resection in Resistant Hypertension

    No full text
    Animal and human data indicate pathological afferent signaling emanating from the carotid body that drives sympathetically mediated elevations in blood pressure in conditions of hypertension. This first-in-man, proof-of-principle study tested the safety and feasibility of unilateral carotid body resection in 15 patients with drug-resistant hypertension. The procedure proved to be safe and feasible. Overall, no change in blood pressure was found. However, 8 patients showed significant reductions in ambulatory blood pressure coinciding with decreases in sympathetic activity. The carotid body may be a novel target for treating an identifiable subpopulation of humans with hypertension
    corecore