3 research outputs found

    Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance

    Get PDF
    Abstract(#br)PtRu bimetal is of particularly attractive in various electrocatalytic reactions owing to its synergistic effect, ligand effect and strain effect. Here, PtRu nanoalloy supported on porous graphitic carbon (PC) has been successfully prepared via a very facile method involving co-reduction the precursors of Pt and Ru at 300 °C by H 2 (PtRu/PCL) followed by thermal treatment at high temperature (700 °C, PtRu/PC–H). Specifically, the electrocatalytic performance of PtRu/PC nanoalloy could be dramatically enhanced through high-temperature annealing. This strategy has synthesized smaller Pt and PtRu nanoparticles (ca. L and Pt/PC nanocatalysts. The mass activity and specific activity on PtRu/PC–H nanoalloy can be increased to 1674.2 mA mg −1 Pt and 4.4 mA cm −2 for MOR, it is 4.08 and 8.80 times higher than that of the Pt/PC nanocatalyst, respectively. From in-situ FTIR spectra, we can discover PtRu/PC–H nanoalloy generates CO 2 at a lower potential of −150 mV than those on PtRu/PC–L (0 mV) and Pt/PC (50 mV) nanocatalysts, dramatically improves the ability of cleavage C–H bond and alleviates the CO ads poisoning on active sites. The PtRu/PCH nanocatalyst exhibits maximum power density of 83.7 mW cm −2 in single methanol fuel cell test, which more than threefold than that of commercial Pt/C as the anode catalyst. Those experimental results open an effective and clean avenue in the development and preparation of high-performance Pt-based nanocatalysts for direct methanol fuel cells

    RSC Adv.

    No full text
    Superhydrophobic porous composite membranes are successfully prepared by using poly(vinyl acetate) functionalized multi-walled carbon nanotubes and tested for water desalination under a direct contact membrane distillation (DCMD) method. The permeate flux of the composite membranes remains greater than 20 kg m (-2) h (-1) and the salt rejection greater than 99.5% when tested with 3.5% NaCl solution at 70 degrees C. The water contact angle of the composite membranes remains greater than 150 degrees after DCMD testing for 2 hours.Superhydrophobic porous composite membranes are successfully prepared by using poly(vinyl acetate) functionalized multi-walled carbon nanotubes and tested for water desalination under a direct contact membrane distillation (DCMD) method. The permeate flux of the composite membranes remains greater than 20 kg m (-2) h (-1) and the salt rejection greater than 99.5% when tested with 3.5% NaCl solution at 70 degrees C. The water contact angle of the composite membranes remains greater than 150 degrees after DCMD testing for 2 hours

    Development of monoclonal antibodies targeting the conserved fragment of hexon protein to detect different serotypes of human adenovirus

    No full text
    ABSTRACTHuman adenovirus (HAdV) infects the respiratory system, thus posing a threat to health. However, immunodiagnostic reagents for human adenovirus are limited. This study aimed to develop efficient diagnostic reagents based on monoclonal antibodies for diagnosing various human adenovirus infections. Evolutionary and homology analyses of various human adenoviral antigen genes revealed highly conserved antigenic fragments. The prokaryotic expression system was applied to recombinant penton, hexon, and IVa2 conserved fragments of adenovirus, which were injected into BALB/c mice to prepare human adenovirus-specific monoclonal antibodies. Enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and Western blotting were used to determine the immune specificity of the monoclonal antibodies. Indirect ELISA showed that monoclonal antibodies 1F10, 8D3, 4A1, and 9B2 were specifically bound to HAdV-3 and HAdV-55 and revealed high sensitivity and low detection limits for various human adenoviruses. Western blotting showed that 1F10 and 8D3 specifically recognized various human adenovirus types, including HAdV-1, HAdV-2, HAdV-3, HAdV-4, HAdV-5, HAdV-7, HAdV-21, and HAdV-55, and 4A1 specifically recognized HAdV-1, HAdV-2, HAdV-3, HAdV-5, HAdV-7, HAdV-21, and HAdV-55. IFAs showed that 1F10, 8D3, and 4A1 exhibited highly selective localization to A549 cells infected with HAdV-3 and HAdV-55. Finally, two antibody pairs that could detect hexon antigens HAdV-3 and HAdV-55 at low concentrations were developed. The monoclonal antibodies developed in this study show potential for detecting human adenoviruses.IMPORTANCEIn this study, we selected the three most conserved antigenic fragments of human adenovirus to prepare a murine monoclonal antibody for the first time, and human adenovirus antigenic fragments with heretofore unheard of degrees of conservatism were isolated. The three monoclonal antibodies with the ability to recognize human respiratory adenovirus over a broad spectrum were screened by hybridoma and monoclonal antibody preparation. Human adenovirus infections are serious; however, therapeutic drugs and diagnostic reagents are scarce. Thus, to reduce the serious consequences of human viral infections and adenovirus pneumonitis, early diagnosis of infection is required. The present study provides three monoclonal antibodies capable of recognizing a wide range of human adenoviruses, thereby offering guidance for subsequent research and development
    corecore