132 research outputs found
Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment
The rise in non-communicable diseases, such as allergies, in westernized countries links to changes in lifestyle and diet. N-3 long chain polyunsaturated fatty acids (LCPUFA) present in marine oils facilitate a favorable milieu for immune maturation and may contribute to allergy prevention. N-3 LCPUFA can suppress innate and adaptive immune activation and induce epigenetic changes. Murine studies convincingly show protective effects of fish oil, a source of n-3 LCPUFA, in food allergy and asthma models. Observational studies in human indicate that high dietary intake of n-3 LCPUFA and low intake of n-6 PUFA may protect against the development of allergic disease early in life. High n-6 PUFA intake is also associated with an increased asthma risk while n-3 LCPUFA may be protective and reduce symptoms. The quality of the marine oil used has impact on efficacy of allergy prevention and several observations link in particular n-3 LCPUFA DHA to allergy suppression. Randomized controlled trials indicate that optimal timing, duration and dosage of n-3 LC-PUFA is required to exert an allergy protective effect. Supplementation during early pregnancy and lactation has shown promising results regarding allergy prevention. However these findings should be confirmed in a larger cohort. Although clinical trials in asthma patients reveal no consistent clinical benefits of n-3 LCPUFA supplementation on lung function, it can suppress airway inflammation. Future food-pharma approaches may reveal whether adjunct therapy with dietary n-3 LCPUFA can improve allergy prevention or immunotherapy via support of allergen specific oral tolerance induction or contribute to the efficacy of drug therapy for asthma patients
ΠΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠΈΠ½Π³ΠΎΠ²ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π° ΡΡΠ½ΠΊΠ΅ ΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π£ΠΊΡΠ°ΠΈΠ½Ρ
PURPOSE OF REVIEW: Despite reaching high percentages of desensitization using allergen-specific immunotherapy (SIT) in patients with food allergy, recent studies suggest only a low number of patients to reach persistent clinical tolerance. This review describes current developments in strategies to improve safety and long-term efficacy of SIT. RECENT FINDINGS: Modified allergens or tolerogenic peptides, ultimately optimized for human leukocyte antigen background of the patient, are explored for tolerance induction, whereas anti-IgE antibody (Omalizumab) may be used to facilitate SIT safety. Adjunct therapies to enhance efficacy may make use of TH1 polarizing agents, for example, CpG-oligodeoxynucleotides combined with modified allergen packaged in nanoparticles. Preclinical studies showed insulin-like growth factor-2, intravenous immunoglobulin, Tregitopes or allergen encased oligomannose-coated liposomes capable of inducing regulatory T-cells, recognized for their importance in clinical tolerance induction. Dietary intervention strategies utilizing herbal formula 2, VSL#3, nondigestible short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS) plus Bifidobacterium breve M-16V or n-3 long-chain polyunsaturated fatty acids may facilitate safety and/or a favourable milieu for tolerance induction. SUMMARY: Combining SIT using (adapted) allergens or tolerogenic peptides with adjunct therapy may be essential to improve safety and/or efficacy. Beyond using targeted approaches, specific dietary components may be explored to reduce side-effects and support clinical tolerance induction by SIT
Butyrate Protects Barrier Integrity and Suppresses Immune Activation in a Caco-2/PBMC Co-Culture Model While HDAC Inhibition Mimics Butyrate in Restoring Cytokine-Induced Barrier Disruption
Low-grade inflammation and barrier disruption are increasingly acknowledged for their association with non-communicable diseases (NCDs). Short chain fatty acids (SCFAs), especially butyrate, could be a potential treatment because of their combined anti-inflammatory and barrier- protective capacities, but more insight into their mechanism of action is needed. In the present study, non-activated, lipopolysaccharide-activated and Ξ±CD3/CD28-activated peripheral blood mononuclear cells (PBMCs) with and without intestinal epithelial cells (IEC) Caco-2 were used to study the effect of butyrate on barrier function, cytokine release and immune cell phenotype. A Caco-2 model was used to compare the capacities of butyrate, propionate and acetate and study their mechanism of action, while investigating the contribution of lipoxygenase (LOX), cyclooxygenase (COX) and histone deacetylase (HDAC) inhibition. Butyrate protected against inflammatory-induced barrier disruption while modulating inflammatory cytokine release by activated PBMCs (interleukin-1 betaβ, tumor necrosis factor alphaβ, interleukin-17aβ, interferon gammaβ, interleukin-10β) and immune cell phenotype (regulatory T-cellsβ, T helper 17 cellsβ, T helper 1 cellsβ) in the PBMC/Caco-2 co-culture model. Similar suppression of immune activation was shown in absence of IEC. Butyrate, propionate and acetate reduced inflammatory cytokine-induced IEC activation and, in particular, butyrate was capable of fully protecting against cytokine-induced epithelial permeability for a prolonged period. Different HDAC inhibitors could mimic this barrier-protective effect, showing HDAC might be involved in the mechanism of action of butyrate, whereas LOX and COX did not show involvement. These results show the importance of sufficient butyrate levels to maintain intestinal homeostasis
ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΡΠ΅Π½ΠΎΡΠ΅Π»Π΅Π·Π΅Π½ΠΊΠΈ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅
Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΡΠ΅Π½ΠΎΡΠ΅Π»Π΅Π·Π΅Π½ΠΊΠΈ Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΡΠΈΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠΊΡΡΡΠ°ΠΊΡΠΎΠ² ΠΈΠ· ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΠΊΡΠ΅Π½ΠΎΡΠ΅Π»Π΅Π·Π΅Π½ΠΊΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΡΠ°ΠΊΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π΅Π³ΠΎ Π±ΠΈΠΎΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈ ΡΠ½Π΄ΠΎΠ±ΡΠΎΠ½Ρ
ΠΈΠ°Π»ΡΠ½ΠΎΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡΠ½ΡΠΌ Ρ Π°Π±ΡΡΠ΅ΡΡΠ°ΠΌΠΈ Π»Π΅Π³ΠΊΠΈΡ
.The problem of xenospleen use in clinical practice is discussed. Reasonability of application of cryobiological technologies to obtain biologically active extracts from xenospleen fragments is shown. The extract has been developed, its biopharmaceutical properties and clinical efficacy at endobronchial administration in patients with lung abscess is shown
Applying the adverse outcome pathway (AOP) for food sensitization to support in vitro testing strategies
Background
Before introducing proteins from new or alternative dietary sources into the market, a compressive risk assessment including food allergic sensitization should be carried out in order to ensure their safety. We have recently proposed the adverse outcome pathway (AOP) concept to structure the current mechanistic understanding of the molecular and cellular pathways evidenced to drive IgE-mediated food allergies. This AOP framework offers the biological context to collect and structure existing in vitro methods and to identify missing assays to evaluate sensitizing potential of food proteins.
Scope and approach
In this review, we provide a state-of-the-art overview of available in vitro approaches for assessing the sensitizing potential of food proteins, including their strengths and limitations. These approaches are structured by their potential to evaluate the molecular initiating and key events driving food sensitization.
Key findings and conclusions
The application of the AOP framework offers the opportunity to anchor existing testing methods to specific building blocks of the AOP for food sensitization. In general, in vitro methods evaluating mechanisms involved in the innate immune response are easier to address than assays addressing the adaptive immune response due to the low precursor frequency of allergen-specific T and B cells. Novel ex vivo culture strategies may have the potential to become useful tools for investigating the sensitizing potential of food proteins. When applied in the context of an integrated testing strategy, the described approaches may reduce, if not replace, current animal testing approaches
Functional differences between primary monocyte-derived and THP-1 macrophages and their response to LCPUFAs
Background: In immune cell models, macrophages are one of the most frequently used cell types. THP-1 cells are often used as model to study macrophage function, however they may act differently from primary human monocyte derived macrophages (MDMs). Methods: In this study, we investigated the intrinsic baseline differences between the human macrophage cell line THP-1 and human primary MDMs. Additionally, we studied the difference in response to treatment with long-chain polyunsaturated fatty acids (LCPUFAs): well-described immunomodulators. Results: Although the amount of cells that phagocytose were similar between the cell types, primary MDMs consumed significantly more E. coli bioparticles compared to THP-1 macrophages. In M1 macrophages, IL-12 secretion was almost fifty times higher by primary MDMs compared to THP-1 macrophages, thereby increasing the IL-12/IL-10 ratio. Despite this, the IL-12 secretion by THP-1 M1 macrophages was higher that the secretion of IL-10, thereby showing that it is still a suitable M1 type. Cytokine profiles differed between primary MDMs and THP-1 M1 and M2 macrophages. In response to LCPUFAs, primary M1 MDMs and THP-1 M1 macrophages were alike. Interestingly, primary M2 MDMs secreted less IL-10 and CCL22 when treated with LCPUFAs, whereas THP-1 M2 macrophages secreted more IL-10 when treated with LCPUFAs and showed no difference in CCL22 secretion. Conclusions: In conclusion, in an M1 setting, both THP-1 and primary MDMs are suitable models. However, when interested in M2 models, the model choice highly depends on the research question
Inhibition of cowβs milk allergy development in mice by oral delivery of Ξ²-lactoglobulin-derived peptides loaded PLGA nanoparticles is associated with systemic whey-specific immune silencing
Background: Two to four percentage of infants are affected by cow's milk allergy (CMA), which persists in 20% of cases. Intervention approaches using early oral exposure to cow's milk protein or hydrolysed cow's milk formula are being studied for CMA prevention. Yet, concerns regarding safety and/or efficacy remain to be tackled in particular for high-risk non-exclusively breastfed infants. Therefore, safe and effective strategies to improve early life oral tolerance induction may be considered. Objective: We aim to investigate the efficacy of CMA prevention using oral pre-exposure of two selected 18-AA Ξ²-lactoglobulin-derived peptides loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in a whey-protein induced CMA murine model. Methods: The peptides were loaded in PLGA NPs via a double emulsion solvent evaporation technique. In vivo, 3-week-old female C3H/HeOuJ mice received 6 daily gavages with PBS, whey, Peptide-mix, a high- or low-dose Peptide-NPs or empty-NP plus Peptide-mix, prior to 5Β weekly oral sensitizations with cholera toxin plus whey or PBS (sham). One week after the last sensitization, the challenge induced acute allergic skin response, anaphylactic shock score, allergen-specific serum immunoglobulins and ex vivo whey-stimulated cytokine release by splenocytes was measured. Results: Mice pre-treated with high-dose Peptide-NPs but not low-dose or empty-NP plus Peptide-mix, were protected from anaphylaxis and showed a significantly lower acute allergic skin response upon intradermal whey challenge compared to whey-sensitized mice. Compared with the Peptide-mix or empty-NP plus Peptide-mix pre-treatment, the high-dose Peptide-NPs-pre-treatment inhibited ex vivo whey-stimulated pro-inflammatory cytokine TNF-Ξ± release by splenocytes. Conclusion & Clinical relevance: Oral pre-exposure of mice to two Ξ²-lactoglobulin-derived peptides loaded PLGA NPs induced a dose-related partial prevention of CMA symptoms upon challenge to whole whey protein and silenced whey-specific systemic immune response. These findings encourage further development of the concept of peptide-loaded PLGA NPs for CMA prevention towards clinical application
An advanced in vitro human mucosal immune model to predict food sensitizing allergenicity risk: A proof of concept using ovalbumin as model allergen
Background: The global demand of sustainable food sources leads to introduction of novel foods on the market, which may pose a risk of inducing allergic sensitization. Currently there are no validated in vitro assays mimicking the human mucosal immune system to study sensitizing allergenicity risk of novel food proteins. The aim of this study was to introduce a series of sequential human epithelial and immune cell cocultures mimicking key immune events after exposure to the common food allergen ovalbumin from intestinal epithelial cell (IEC) activation up to mast cell degranulation. Methods: This in vitro human mucosal food sensitizing allergenicity model combines crosstalk between IEC and monocyte-derived dendritic cells (moDC), followed by coculture of the primed moDCs with allogenic naΓ―ve CD4+ T cells. During subsequent coculture of primed CD4+ T cells with naΓ―ve B cells, IgE isotype-switching was monitored and supernatants were added to primary human mast cells to investigate degranulation upon IgE crosslinking. Mediator secretion and surface marker expression of immune cells were determined. Results: Ovalbumin activates IEC and underlying moDCs, both resulting in downstream IgE isotype-switching. However, only direct exposure of moDCs to ovalbumin drives Th2 polarization and a humoral B cell response allowing for IgE mediated mast cell degranulation, IL13 and IL4 release in this sequential DC-T cell-B cell-mast cell model, indicating also an immunomodulatory role for IEC. Conclusion: This in vitro coculture model combines multiple key events involved in allergic sensitization from epithelial cell to mast cell, which can be applied to study the allergic mechanism and sensitizing capacity of proteins
Oral pretreatment with Ξ²-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow's milk allergy development in mice
Cow's milk allergy is a common food allergy among infants. Improved hygiene conditions and loss of microbial diversity are associated with increased risk of allergy development. The intestinal immune system is essential for oral tolerance induction. In this respect, bacterial CpG DNA is known to drive Th1 and regulatory T-cell (Treg) development via Toll-Like-Receptor 9 (TLR-9) signaling, skewing away from the allergic Th2 phenotype. We aimed to induce allergen specific tolerance via oral delivery of poly (lactic-co-glycolic acid) nanoparticles (NP) co-encapsulated with a selected Ξ²-lactoglobulin derived peptide (BLG-Pep) and TLR-9 ligand CpG oligodeoxynucleotide (CpG). In vivo, 3-4-week-old female C3H/HeOuJ mice housed in individually ventilated cages received 6-consecutive-daily gavages of either PBS, whey, BLG-Pep/NP, CpG/NP, a mixture of BLG-Pep/NP plus CpG/NP or co-encapsulated BLG-Pep+CpG/NP, before 5-weekly oral sensitizations with whey plus cholera toxin (CT) or only CT (sham) and were challenged with whey 5 days after the last sensitization. The co-encapsulated BLG-Pep+CpG/NP pretreatment, but not BLG-Pep/NP, CpG/NP or the mixture of BLG-Pep/NP plus CpG/NP, prevented the whey-induced allergic skin reactivity and prevented rise in serum BLG-specific IgE compared to whey-sensitized mice. Importantly, co-encapsulated BLG-Pep+CpG/NP pretreatment reduced dendritic cell (DC) activation and lowered the frequencies of PD-L1+ DC in the mesenteric lymph nodes compared to whey-sensitized mice. By contrast, co-encapsulated BLG-Pep+CpG/NP pretreatment increased the frequency of splenic PD-L1+ DC compared to the BLG-Pep/NP plus CpG/NP recipients, in association with lower Th2 development and increased Treg/Th2 and Th1/Th2 ratios in the spleen. Oral administration of PLGA NP co-encapsulated with BLG-Pep and CpG prevented rise in serum BLG-specific IgE and symptom development while lowering splenic Th2 cell frequency in these mice which were kept under strict hygienic conditions
- β¦