1,205 research outputs found
Evolution of the rates of mass wasting and fluvial sediment transfer from the epicentral area of the 1999, Mw 7.6 earthquake
The 1999 Chichi earthquake (Mw=7.6) triggered more than 20,000 landslides in the epicentral area in central west Taiwan, and subsequent typhoons have caused an even larger number of slope failures. As a result, the suspended sediment load of the epi- central Choshui River has increased dramatically. Measurements of suspended sedi- ment at a downstream gauging station indicate that the unit sediment concentration increased about six times due to the earthquake, and decreased exponentially due to flushing by subsequent typhoons. The e-folding time scale of the seismic perturbation of sediment transfer in the Choshui River is 3-5 years. Based on this estimate of the de- cay of the erosional response to the earthquake, a mass balance can be calculated for the earthquake, including co-seismic uplift and subsidence, post-seismic relaxation, and erosion. This mass balance shows that the Chi-Chi earthquake has acted to build ridge topography in the hanging wall of the fault, but in the far field, some destruc- tion of topography has occurred. However, our estimate of seismically-driven erosion may be incomplete. A detailed analysis of landsliding in the Chenyoulan tributary of the Choshui River indicates that most co-and post seismic landslide debris remains on hillslopes within the catchment. Recent typhoons have continued to cause high rates of landsliding high in the landscape, but rates of mass wasting near the stream net- work have decreased. The full geomorphic response to the Chi-Chi earthquake may be much larger, and more protracted than indicated by river gauging data
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
An optimization procedure determining the ideal configuration at the
microstructural level of ferroelectric (FE) materials is applied to maximize
piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from
that of single crystals because of the presence of crystallites (grains)
possessing crystallographic axes aligned imperfectly. The piezoelectric
properties of a polycrystalline (ceramic) FE is inextricably related to the
grain orientation distribution (texture). The set of combination of variables,
known as solution space, which dictates the texture of a ceramic is unlimited
and hence the choice of the optimal solution which maximizes the
piezoelectricity is complicated. Thus a stochastic global optimization combined
with homogenization is employed for the identification of the optimal granular
configuration of the FE ceramic microstructure with optimum piezoelectric
properties. The macroscopic equilibrium piezoelectric properties of
polycrystalline FE is calculated using mathematical homogenization at each
iteration step. The configuration of grains characterised by its orientations
at each iteration is generated using a randomly selected set of orientation
distribution parameters. Apparent enhancement of piezoelectric coefficient
is observed in an optimally oriented BaTiO single crystal. A
configuration of crystallites, simultaneously constraining the orientation
distribution of the c-axis (polar axis) while incorporating ab-plane
randomness, which would multiply the overall piezoelectricity in ceramic
BaTiO is also identified. The orientation distribution of the c-axes is
found to be a narrow Gaussian distribution centred around . The
piezoelectric coefficient in such a ceramic is found to be nearly three times
as that of the single crystal.Comment: 11 pages, 7 figure
Room-temperature ferromagnetism in Sr_(1-x)Y_xCoO_(3-delta) (0.2 < x < 0.25)
We have measured magnetic susceptibility and resistivity of
SrYCoO ( 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3,
and 0.4), and have found that SrYCoO is a room
temperature ferromagnet with a Curie temperature of 335 K in a narrow
compositional range of 0.2 0.25. This is the highest transition
temperature among perovskite Co oxides. The saturation magnetization for
0.225 is 0.25 /Co at 10 K, which implies that the observed
ferromagnetism is a bulk effect. We attribute this ferromagnetism to a peculiar
Sr/Y ordering.Comment: 5 pages, 4 figure
First-principles study of the electrooptic effect in ferroelectric oxides
We present a method to compute the electrooptic tensor from first principles,
explicitly taking into account the electronic, ionic and piezoelectric
contributions. It allows us to study the non-linear optic behavior of three
ferroelectric ABO_3 compounds : LiNbO_3, BaTiO_3 and PbTiO_3. Our calculations
reveal the dominant contribution of the soft mode to the electrooptic
coefficients in LiNbO_3 and BaTiO_3 and identify the coupling between the
electric field and the polar atomic displacements along the B-O chains as the
origin of the large electrooptic response in these compounds.Comment: accepted for publication in Phys. Rev. Let
Low-temperature phase transformations of PZT in the morphotropic phase-boundary region
We present anelastic and dielectric spectroscopy measurements of
PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the
low temperature phase transitions. The tetragonal-to-monoclinic transformation
is first-order for x < 0.48 and causes a softening of the polycrystal Young's
modulus whose amplitude may exceed the one at the cubic-to-tetragonal
transformation; this is explainable in terms of linear coupling between shear
strain components and tilting angle of polarization in the monoclinic phase.
The transition involving rotations of the octahedra below 200 K is visible both
in the dielectric and anelastic losses, and it extends within the tetragonal
phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure
Domain Size Dependence of Piezoelectric Properties of Ferroelectrics
The domain size dependence of piezoelectric properties of ferroelectrics is
investigated using a continuum Ginzburg-Landau model that incorporates the
long-range elastic and electrostatic interactions. Microstructures with desired
domain sizes are created by quenching from the paraelectric phase by biasing
the initial conditions. Three different two-dimensional microstructures with
different sizes of the domains are simulated. An electric field is
applied along the polar as well as non-polar directions and the piezoelectric
response is simulated as a function of domain size for both cases. The
simulations show that the piezoelectric coefficients are enhanced by reducing
the domain size, consistent with recent experimental results of Wada and
Tsurumi (Brit. Ceram. Trans. {\bf 103}, 93, 2004) on domain engineered
Comment: submitted to Physical Review
Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects
We investigated a switchable ferroelectric diode effect and its physical
mechanism in Pt/BiFeO3/SrRuO3 thin-film capacitors. Our results of electrical
measurements support that, near the Pt/BiFeO3 interface of as-grown samples, a
defective layer (possibly, an oxygen-vacancy-rich layer) becomes formed and
disturbs carrier injection. We therefore used an electrical training process to
obtain ferroelectric control of the diode polarity where, by changing the
polarization direction using an external bias, we could switch the transport
characteristics between forward and reverse diodes. Our system is characterized
with a rectangular polarization hysteresis loop, with which we confirmed that
the diode polarity switching occurred at the ferroelectric coercive voltage.
Moreover, we observed a simultaneous switching of the diode polarity and the
associated photovoltaic response dependent on the ferroelectric domain
configurations. Our detailed study suggests that the polarization charge can
affect the Schottky barrier at the ferroelectric/metal interfaces, resulting in
a modulation of the interfacial carrier injection. The amount of
polarization-modulated carrier injection can affect the transition voltage
value at which a space-charge-limited bulk current-voltage (J-V) behavior is
changed from Ohmic (i.e., J ~ V) to nonlinear (i.e., J ~ V^n with n \geq 2).
This combination of bulk conduction and polarization-modulated carrier
injection explains the detailed physical mechanism underlying the switchable
diode effect in ferroelectric capacitors.Comment: Accepted for publication in Phys. Rev.
Phase II Proof-of-Concept Trial of the Orexin Receptor Antagonist Filorexant (MK-6096) in Patients with Major Depressive Disorder.
BackgroundWe evaluated the orexin receptor antagonist filorexant (MK-6096) for treatment augmentation in patients with major depressive disorder.MethodsWe conducted a 6-week, double-blind, placebo-controlled, parallel-group, Phase II, proof-of-concept study. Patients with major depressive disorder (partial responders to ongoing antidepressant therapy) were randomized 1:1 to once-daily oral filorexant 10 mg or matching placebo.ResultsDue to enrollment challenges, the study was terminated early, resulting in insufficient statistical power to detect a prespecified treatment difference; of 326 patients planned, 129 (40%) were randomized and 128 took treatment. There was no statistically significant difference in the primary endpoint of change from baseline to week 6 in Montgomery Asberg Depression Rating Scale total score; the estimated treatment difference for filorexant-placebo was -0.7 (with negative values favoring filorexant) (P=.679). The most common adverse events were somnolence and suicidal ideation.ConclusionsThe interpretation of the results is limited by the enrollment, which was less than originally planned, but the available data do not suggest efficacy of orexin receptor antagonism with filorexant for the treatment of depression. (Clinical Trial Registry: clinicaltrials.gov: NCT01554176)
Constraints on Beta Functions from Duality
We analyze the way in which duality constrains the exact beta function and
correlation length in single-coupling spin systems. A consistency condition we
propose shows very concisely the relation between self-dual points and phase
transitions, and implies that the correlation length must be duality invariant.
These ideas are then tested on the 2-d Ising model, and used towards finding
the exact beta function of the -state Potts model. Finally, a generic
procedure is given for identifying a duality symmetry in other single-coupling
models with a continuous phase transition.Comment: LaTeX, 6 page
Classification of time series by shapelet transformation
Time-series classification (TSC) problems present a specific challenge for classification algorithms: how to measure similarity between series. A \emph{shapelet} is a time-series subsequence that allows for TSC based on local, phase-independent similarity in shape. Shapelet-based classification uses the similarity between a shapelet and a series as a discriminatory feature. One benefit of the shapelet approach is that shapelets are comprehensible, and can offer insight into the problem domain. The original shapelet-based classifier embeds the shapelet-discovery algorithm in a decision tree, and uses information gain to assess the quality of candidates, finding a new shapelet at each node of the tree through an enumerative search. Subsequent research has focused mainly on techniques to speed up the search. We examine how best to use the shapelet primitive to construct classifiers. We propose a single-scan shapelet algorithm that finds the best shapelets, which are used to produce a transformed dataset, where each of the features represent the distance between a time series and a shapelet. The primary advantages over the embedded approach are that the transformed data can be used in conjunction with any classifier, and that there is no recursive search for shapelets. We demonstrate that the transformed data, in conjunction with more complex classifiers, gives greater accuracy than the embedded shapelet tree. We also evaluate three similarity measures that produce equivalent results to information gain in less time. Finally, we show that by conducting post-transform clustering of shapelets, we can enhance the interpretability of the transformed data. We conduct our experiments on 29 datasets: 17 from the UCR repository, and 12 we provide ourselve
- …