14 research outputs found

    Development of a Poisoned Bait Strategy against the Silverfish Ctenolepisma longicaudata (Escherich, 1905)

    No full text
    Pest management strives to be an efficient, yet healthy and environmentally safe control method, and the use of poisoned bait often fulfils these criteria. In the present study, we show that bait with indoxacarb as the active ingredient is highly efficient for controlling Ctenolepisma longicaudata (Escherich, 1905) and two of its relatives, Lepisma saccharina (Linnaeus, 1758) and Ctenolepisma calva (Ritter, 1910). Applying small bait droplets (size ~10 mg) along the walls of several types of buildings, at no more than 0.5 to 1.0 g bait per 100 m2, was a cost-efficient and safe strategy for the knockdown and eradication of C. longicaudata. During field experiments, the demography changed from an initial mixture of diffierent stages to total dominance of early instars preceding the population collapse. Poisonous bait outcompeted mass-trapping with sticky-traps and conventional insect spray treatment for the efficient control of C. longicaudata in apartments. Different droplet densities (1 vs. 0.5/m2) and active ingredients (indoxacarb vs. clothianidin) did not have different effects in field experiments. These results show that poisoned bait is a highly relevant tool for managing C. longicaudata and potentially against other silverfish infestations

    Skadedyr i hus og urbane miljøer, felthåndbok

    No full text
    De fleste dyrene som er beskrevet er skadedyr, det vil si dyr som kommer i konflikt med menneskelige interesser. Eksempler er dyr som ødelegger treverk, matvarer eller tekstiler, samt dyr som suger blod eller sprer smitte. Boka inneholder beskrivelser av ulike skadedyrs utseende og biologi, hvilken skade dyrene kan forårsake, hvordan skade kan forebygges og hvordan dyrene kan bekjempes. Boka er opprinnelig fra 2014 med små endringer i senere utgaver

    Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data

    No full text
    Recently, focus on tick-borne diseases has increased as ticks and their pathogens have become widespread and represent a health problem in Europe. Understanding the epidemiology of tickborne infections requires the ability to predict and map tick abundance. We measured Ixodes ricinus abundance at 159 sites in southern Scandinavia from August-September, 2016. We used field data and environmental variables to develop predictive abundance models using machine learning algorithms, and also tested these models on 2017 data. Larva and nymph abundance models had relatively high predictive power (normalized RMSE from 0.65–0.69, R2 from 0.52–0.58) whereas adult tick models performed poorly (normalized RMSE from 0.94–0.96, R2 from 0.04–0.10). Testing the models on 2017 data produced good results with normalized RMSE values from 0.59–1.13 and R2 from 0.18–0.69. The resulting 2016 maps corresponded well with known tick abundance and distribution in Scandinavia. The models were highly influenced by temperature and vegetation, indicating that climate may be an important driver of I. ricinus distribution and abundance in Scandinavia. Despite varying results, the models predicted abundance in 2017 with high accuracy. The models are a first step towards environmentally driven tick abundance models that can assist in determining risk areas and interpreting human incidence data
    corecore