5 research outputs found

    Tissue Microarrays for Analysis of Expression Patterns

    No full text
    Proteins are essential building blocks in every living cell, and since the complete human genome was sequenced in 2004, researchers have attempted to map the human proteome, which is the functional representation of the genome. One such initiative is the Human Protein Atlas programme (HPA), which generates monospecific antibodies towards all human proteins and uses these for high-throughput tissue profiling on tissue microarrays (TMAs). The results are publically available at the website www.proteinatlas.org. In this thesis, TMAs were used for analysis of expression patterns in various research areas. Different search queries in the HPA were tested and evaluated, and a number of potential biomarkers were identified, e.g. proteins exclusively expressed in islets of Langerhans, but not in exocrine glandular cells or other abdominal organs close to pancreas. The identified candidates were further analyzed on TMAs with pancreatic tissues from normal and diabetic individuals, and colocalization studies with insulin and glucagon revealed that several of the investigated proteins (DGCR2, GBF1, GPR44 and SerpinB10) appeared to be beta cell specific. Moreover, a set of proteins differentially expressed in lung cancer stroma was further analyzed on a clinical lung cancer cohort in the TMA format, and one protein (CD99) was significantly associated with survival. In addition, TMAs with tissue samples from different species were generated, e.g. for mapping of influenza virus attachment in various human and avian tissues. The results showed that the gull influenza virus H16N3 attached to human respiratory tract and eye, suggesting possible transmission of the virus between gull and human. TMAs were also used for analysis of protein expression differences between humans and other primates, and two proteins (TCF3 and SATB2) proved to be significantly differentially expressed on the human lineage at both the protein level and the RNA level.   In conclusion, this thesis exemplifies the potential of the TMA technology, which can be used for analysis of expression patterns in a large variety of research fields, such as biomarker discovery, influenza virus research or further understanding of human evolution

    Tissue Microarrays for Analysis of Expression Patterns

    No full text
    Proteins are essential building blocks in every living cell, and since the complete human genome was sequenced in 2004, researchers have attempted to map the human proteome, which is the functional representation of the genome. One such initiative is the Human Protein Atlas programme (HPA), which generates monospecific antibodies towards all human proteins and uses these for high-throughput tissue profiling on tissue microarrays (TMAs). The results are publically available at the website www.proteinatlas.org. In this thesis, TMAs were used for analysis of expression patterns in various research areas. Different search queries in the HPA were tested and evaluated, and a number of potential biomarkers were identified, e.g. proteins exclusively expressed in islets of Langerhans, but not in exocrine glandular cells or other abdominal organs close to pancreas. The identified candidates were further analyzed on TMAs with pancreatic tissues from normal and diabetic individuals, and colocalization studies with insulin and glucagon revealed that several of the investigated proteins (DGCR2, GBF1, GPR44 and SerpinB10) appeared to be beta cell specific. Moreover, a set of proteins differentially expressed in lung cancer stroma was further analyzed on a clinical lung cancer cohort in the TMA format, and one protein (CD99) was significantly associated with survival. In addition, TMAs with tissue samples from different species were generated, e.g. for mapping of influenza virus attachment in various human and avian tissues. The results showed that the gull influenza virus H16N3 attached to human respiratory tract and eye, suggesting possible transmission of the virus between gull and human. TMAs were also used for analysis of protein expression differences between humans and other primates, and two proteins (TCF3 and SATB2) proved to be significantly differentially expressed on the human lineage at both the protein level and the RNA level.   In conclusion, this thesis exemplifies the potential of the TMA technology, which can be used for analysis of expression patterns in a large variety of research fields, such as biomarker discovery, influenza virus research or further understanding of human evolution

    Tissue Microarrays for Analysis of Expression Patterns

    No full text
    Proteins are essential building blocks in every living cell, and since the complete human genome was sequenced in 2004, researchers have attempted to map the human proteome, which is the functional representation of the genome. One such initiative is the Human Protein Atlas programme (HPA), which generates monospecific antibodies towards all human proteins and uses these for high-throughput tissue profiling on tissue microarrays (TMAs). The results are publically available at the website www.proteinatlas.org. In this thesis, TMAs were used for analysis of expression patterns in various research areas. Different search queries in the HPA were tested and evaluated, and a number of potential biomarkers were identified, e.g. proteins exclusively expressed in islets of Langerhans, but not in exocrine glandular cells or other abdominal organs close to pancreas. The identified candidates were further analyzed on TMAs with pancreatic tissues from normal and diabetic individuals, and colocalization studies with insulin and glucagon revealed that several of the investigated proteins (DGCR2, GBF1, GPR44 and SerpinB10) appeared to be beta cell specific. Moreover, a set of proteins differentially expressed in lung cancer stroma was further analyzed on a clinical lung cancer cohort in the TMA format, and one protein (CD99) was significantly associated with survival. In addition, TMAs with tissue samples from different species were generated, e.g. for mapping of influenza virus attachment in various human and avian tissues. The results showed that the gull influenza virus H16N3 attached to human respiratory tract and eye, suggesting possible transmission of the virus between gull and human. TMAs were also used for analysis of protein expression differences between humans and other primates, and two proteins (TCF3 and SATB2) proved to be significantly differentially expressed on the human lineage at both the protein level and the RNA level.   In conclusion, this thesis exemplifies the potential of the TMA technology, which can be used for analysis of expression patterns in a large variety of research fields, such as biomarker discovery, influenza virus research or further understanding of human evolution

    The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling

    No full text
    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects

    The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling

    No full text
    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects
    corecore