620 research outputs found

    Testing Rotational Mixing Predictions with New Boron Abundances in Main Sequence B-type Stars

    Full text link
    (Abridged) New boron abundances for seven main-sequence B-type stars are determined from HST STIS spectroscopy around the BIII 2066A line. Boron abundances provide a unique and critical test of stellar evolution models that include rotational mixing since boron is destroyed in the surface layers of stars through shallow mixing long before other elements are mixed from the stellar interior through deep mixing. Boron abundances range from 12+log(B/H) = 1.0 to 2.2. The boron abundances are compared to the published values of their stellar nitrogen abundances (all have 12+log(N/H) < 7.8, i.e., they do not show significant CNO-mixing) and to their host cluster ages (4 to 16 Myr) to investigate the predictions from models of massive star evolution with rotational mixing effects (Heger & Langer 2000). Only three stars (out of 34) deviate from the model predictions, including HD36591, HD205021, and HD30836. These three stars suggest that rotational mixing could be more efficient than currently modelled at the highest rotation rates.Comment: 10 figures, 7 tables; accepted for publication in the Astrophysical Journa

    Topical Review on "Beta-beams"

    Full text link
    Neutrino physics is traversing an exciting period, after the important discovery that neutrinos are massive particles, that has implications from high-energy physics to cosmology. A new method for the production of intense and pure neutrino beams has been proposed recently: the ``beta-beam''. It exploits boosted radioactive ions decaying through beta-decay. This novel concept has been the starting point for a new possible future facility. Its main goal is to address the crucial issue of the existence of CP violation in the lepton sector. Here we review the status and the recent developments with beta-beams. We discuss the original, the medium and high-energy scenarios as well as mono-chromatic neutrino beams produced through ion electron-capture. The issue of the degeneracies is mentioned. An overview of low energy beta-beams is also presented. These beams can be used to perform experiments of interest for nuclear structure, for the study of fundamental interactions and for nuclear astrophysics.Comment: Topical Review for Journal of Physics G: Nuclear and Particle Physics, published version, minor corrections, references adde

    Nickel: A very fast diffuser in silicon

    Get PDF
    Nickel is increasingly used in both IC and photovoltaic device fabrication, yet it has the potential to create highly recombination-active precipitates in silicon. For nearly three decades, the accepted nickel diffusivity in silicon has been DNi(T)=2.3×10exp−3 exp(−0.47 eV/kBT) cm2/s, a surprisingly low value given reports of rapid nickel diffusion in industrial applications. In this paper, we employ modern experimental methods to measure the higher nickel diffusivity DNi(T)=(1.69±0.74)×10exp−4 exp(−0.15±0.04 eV/kBT)  cm2/s. The measured activation energy is close to that predicted by first-principles theory using the nudged-elastic-band method. Our measured diffusivity of nickel is higher than previously published values at temperatures below 1150 °C, and orders of magnitude higher when extrapolated to room temperature.Peer reviewe

    Chandra spectroscopy of the hot star beta Crucis and the discovery of a pre-main-sequence companion

    Full text link
    In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74 ks observation of the nearby early B giant, beta Cru (B0.5 III), with the Chandra HETGS. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines are resolved but quite narrow, with half-widths of 150 km/s. The forbidden-to-intercombination line ratios of Ne IX and Mg XI indicate that the hot plasma is distributed in the wind, rather than confined near the photosphere. It is difficult to understand the X-ray data in the context of the standard wind-shock paradigm for OB stars, primarily because of the narrow lines, but also because of the high X-ray production efficiency. A scenario in which the bulk of the outer wind is shock heated is broadly consistent with the data, but not very well motivated theoretically. It is possible that magnetic channeling could explain the X-ray properties, although no field has been detected on beta Cru. We detected periodic variability in the hard (hnu > 1 keV) X-rays, modulated on the known optical period of 4.58 hours, which is the period of the primary beta Cep pulsation mode for this star. We also have detected, for the first time, an apparent companion to beta Cru at a projected separation of 4 arcsec. This companion was likely never seen in optical images because of the presumed very high contrast between it and beta Cru in the optical. However, the brightness contrast in the X-ray is only 3:1, which is consistent with the companion being an X-ray active low-mass pre-main-sequence star. The companion's X-ray spectrum is relatively hard and variable, as would be expected from a post T Tauri star.Comment: Accepted for publication in MNRAS; 19 pages, 15 figures, some in color; version with higher-resolution figures available at http://astro.swarthmore.edu/~cohen/papers/bcru_mnras2008.pd

    Doping Evolution of the Underlying Fermi Surface in La2-xSrxCuO4

    Full text link
    We have performed a systematic doping dependent study of La2−x_{2-x}Srx_xCuO4_4 (LSCO) (0.03≀x≀\leq x \leq0.3) by angle-resolved photoemission spectroscopy. In the entire doping range, the underlying ``Fermi surface" determined from the low energy spectral weight approximately satisfies Luttinger's theorem, even down to the lightly-doped region. This is in strong contrast to the result on Ca2−x_{2-x}Nax_xCuO2_2Cl2_2 (Na-CCOC), which shows a strong deviation from Luttinger's theorem. The differences between LSCO and Na-CCOC are correlated with the different behaviors of the chemical potential shift and spectral weight transfer induced by hole doping.Comment: 4 pages, 4 figure

    Theoretical study of O adlayers on Ru(0001)

    Full text link
    Recent experiments performed at high pressures indicate that ruthenium can support unusually high concentrations of oxygen at the surface. To investigate the structure and stability of high coverage oxygen structures, we performed density functional theory calculations, within the generalized gradient approximation, for O adlayers on Ru(0001) from low coverage up to a full monolayer. We achieve quantitative agreement with previous low energy electron diffraction intensity analyses for the (2x2) and (2x1) phases and predict that an O adlayer with a (1x1) periodicity and coverage of 1 monolayer can form on Ru(0001), where the O adatoms occupy hcp-hollow sites.Comment: RevTeX, 6 pages, 4 figure

    Towards a first-principles theory of surface thermodynamics and kinetics

    Get PDF
    Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. To link these processes we combine state-of-the-art microscopic, and macroscopic phenomenological, theories. We apply our theory to the O/Ru(0001) system and calculate thermal desorption spectra, heat of adsorption, and the surface phase diagram. The agreement with experiment provides validity for our approach which thus identifies the way for a predictive simulation of surface thermodynamics and kinetics.Comment: 4 pages including 3 figures. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Surprises in the doping dependence of the Fermi surface in Bi(Pb)-2212

    Full text link
    A detailed and systematic ARPES investigation of the doping-dependence of the normal state Fermi surface (FS) of modulation-free (Pb,Bi)-2212 is presented. The FS does not change in topology away from hole-like at any stage. The data reveal, in addition, a number of surprises. Firstly the FS area does not follow the usual curve describing Tc vs x for the hole doped cuprates, but is down-shifted in doping by ca. 0.05 holes per Cu site, indicating either the break-down of Luttinger's theorem or the consequences of a significant bi-layer splitting of the FS. Secondly, the strong k-dependence of the FS width is shown to be doping independent. Finally, the relative strength of the shadow FS has a doping dependence mirroring that of Tc.Comment: 5 pages, 4 figures (revtex
    • 

    corecore